Step | Hyp | Ref
| Expression |
1 | | clwwlknimp 26304 |
. . . 4
⊢ (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸)) |
2 | | simpr 476 |
. . . . . 6
⊢
(((((𝑊 ∈ Word
𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑉 USGrph 𝐸) → 𝑉 USGrph 𝐸) |
3 | | uz2m1nn 11639 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
4 | | lbfzo0 12375 |
. . . . . . . . . . . 12
⊢ (0 ∈
(0..^(𝑁 − 1)) ↔
(𝑁 − 1) ∈
ℕ) |
5 | 3, 4 | sylibr 223 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘2) → 0 ∈ (0..^(𝑁 − 1))) |
6 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑊‘𝑖) = (𝑊‘0)) |
7 | 6 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
8 | | oveq1 6556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
9 | 8 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = (0 + 1)) |
10 | | 0p1e1 11009 |
. . . . . . . . . . . . . . 15
⊢ (0 + 1) =
1 |
11 | 9, 10 | syl6eq 2660 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑖 + 1) = 1) |
12 | 11 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → (𝑊‘(𝑖 + 1)) = (𝑊‘1)) |
13 | 7, 12 | preq12d 4220 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)}) |
14 | 13 | eleq1d 2672 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘2) ∧ 𝑖 = 0) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸)) |
15 | 5, 14 | rspcdv 3285 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸)) |
16 | 15 | com12 32 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
(0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 → (𝑁 ∈ (ℤ≥‘2)
→ {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸)) |
17 | 16 | 3ad2ant2 1076 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸) → (𝑁 ∈ (ℤ≥‘2)
→ {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸)) |
18 | 17 | imp 444 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸) ∧ 𝑁 ∈ (ℤ≥‘2))
→ {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸) |
19 | 18 | adantr 480 |
. . . . . 6
⊢
(((((𝑊 ∈ Word
𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑉 USGrph 𝐸) → {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸) |
20 | | usgraedgrn 25910 |
. . . . . . 7
⊢ ((𝑉 USGrph 𝐸 ∧ {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸) → (𝑊‘0) ≠ (𝑊‘1)) |
21 | 20 | necomd 2837 |
. . . . . 6
⊢ ((𝑉 USGrph 𝐸 ∧ {(𝑊‘0), (𝑊‘1)} ∈ ran 𝐸) → (𝑊‘1) ≠ (𝑊‘0)) |
22 | 2, 19, 21 | syl2anc 691 |
. . . . 5
⊢
(((((𝑊 ∈ Word
𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸) ∧ 𝑁 ∈ (ℤ≥‘2))
∧ 𝑉 USGrph 𝐸) → (𝑊‘1) ≠ (𝑊‘0)) |
23 | 22 | exp31 628 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸) → (𝑁 ∈ (ℤ≥‘2)
→ (𝑉 USGrph 𝐸 → (𝑊‘1) ≠ (𝑊‘0)))) |
24 | 1, 23 | syl 17 |
. . 3
⊢ (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → (𝑁 ∈ (ℤ≥‘2)
→ (𝑉 USGrph 𝐸 → (𝑊‘1) ≠ (𝑊‘0)))) |
25 | 24 | com13 86 |
. 2
⊢ (𝑉 USGrph 𝐸 → (𝑁 ∈ (ℤ≥‘2)
→ (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → (𝑊‘1) ≠ (𝑊‘0)))) |
26 | 25 | 3imp 1249 |
1
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2)
∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → (𝑊‘1) ≠ (𝑊‘0)) |