Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usg2cwwkdifex | Structured version Visualization version GIF version |
Description: If a word represents a closed walk of length at least 2 in a undirected simple graph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
Ref | Expression |
---|---|
usg2cwwkdifex | ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) ≠ (𝑊‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 11185 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ ℕ0) |
3 | eluz2nn 11602 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
4 | eluz2 11569 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
5 | 1red 9934 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
6 | 2re 10967 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
8 | zre 11258 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
9 | 5, 7, 8 | 3jca 1235 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
11 | simpr 476 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁) | |
12 | 1lt2 11071 | . . . . . . . 8 ⊢ 1 < 2 | |
13 | 11, 12 | jctil 558 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁)) |
14 | ltletr 10008 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 < 𝑁)) | |
15 | 10, 13, 14 | sylc 63 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
16 | 15 | 3adant1 1072 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 1 < 𝑁) |
17 | 4, 16 | sylbi 206 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
18 | elfzo0 12376 | . . . 4 ⊢ (1 ∈ (0..^𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 1 < 𝑁)) | |
19 | 2, 3, 17, 18 | syl3anbrc 1239 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ (0..^𝑁)) |
20 | 19 | 3ad2ant2 1076 | . 2 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → 1 ∈ (0..^𝑁)) |
21 | fveq2 6103 | . . . 4 ⊢ (𝑖 = 1 → (𝑊‘𝑖) = (𝑊‘1)) | |
22 | 21 | adantl 481 | . . 3 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) ∧ 𝑖 = 1) → (𝑊‘𝑖) = (𝑊‘1)) |
23 | 22 | neeq1d 2841 | . 2 ⊢ (((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) ∧ 𝑖 = 1) → ((𝑊‘𝑖) ≠ (𝑊‘0) ↔ (𝑊‘1) ≠ (𝑊‘0))) |
24 | usg2cwwk2dif 26348 | . 2 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → (𝑊‘1) ≠ (𝑊‘0)) | |
25 | 20, 23, 24 | rspcedvd 3289 | 1 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ (ℤ≥‘2) ∧ 𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) ≠ (𝑊‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 0cc0 9815 1c1 9816 < clt 9953 ≤ cle 9954 ℕcn 10897 2c2 10947 ℕ0cn0 11169 ℤcz 11254 ℤ≥cuz 11563 ..^cfzo 12334 USGrph cusg 25859 ClWWalksN cclwwlkn 26277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-usgra 25862 df-clwwlk 26279 df-clwwlkn 26280 |
This theorem is referenced by: usghashecclwwlk 26362 |
Copyright terms: Public domain | W3C validator |