Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unelldsys Structured version   Visualization version   GIF version

Theorem unelldsys 29548
Description: Lambda-systems are closed under disjoint set unions. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
unelldsys.s (𝜑𝑆𝐿)
unelldsys.a (𝜑𝐴𝑆)
unelldsys.b (𝜑𝐵𝑆)
unelldsys.c (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
unelldsys (𝜑 → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑆(𝑦)   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem unelldsys
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uneq1 3722 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
21adantl 481 . . . 4 ((𝜑𝐴 = ∅) → (𝐴𝐵) = (∅ ∪ 𝐵))
3 uncom 3719 . . . . 5 (𝐵 ∪ ∅) = (∅ ∪ 𝐵)
4 un0 3919 . . . . 5 (𝐵 ∪ ∅) = 𝐵
53, 4eqtr3i 2634 . . . 4 (∅ ∪ 𝐵) = 𝐵
62, 5syl6eq 2660 . . 3 ((𝜑𝐴 = ∅) → (𝐴𝐵) = 𝐵)
7 unelldsys.b . . . 4 (𝜑𝐵𝑆)
87adantr 480 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝑆)
96, 8eqeltrd 2688 . 2 ((𝜑𝐴 = ∅) → (𝐴𝐵) ∈ 𝑆)
10 unelldsys.a . . . . 5 (𝜑𝐴𝑆)
11 uniprg 4386 . . . . 5 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
1210, 7, 11syl2anc 691 . . . 4 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
1312adantr 480 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} = (𝐴𝐵))
14 prct 28875 . . . . . 6 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ≼ ω)
1510, 7, 14syl2anc 691 . . . . 5 (𝜑 → {𝐴, 𝐵} ≼ ω)
1615adantr 480 . . . 4 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ≼ ω)
17 unelldsys.c . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
1817adantr 480 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) = ∅)
1910adantr 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑆)
207adantr 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐵𝑆)
21 n0 3890 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2221biimpi 205 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑧 𝑧𝐴)
2322adantl 481 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → ∃𝑧 𝑧𝐴)
24 disjel 3975 . . . . . . . . . 10 (((𝐴𝐵) = ∅ ∧ 𝑧𝐴) → ¬ 𝑧𝐵)
2517, 24sylan 487 . . . . . . . . 9 ((𝜑𝑧𝐴) → ¬ 𝑧𝐵)
26 nelne1 2878 . . . . . . . . . 10 ((𝑧𝐴 ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2726adantll 746 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ ¬ 𝑧𝐵) → 𝐴𝐵)
2825, 27mpdan 699 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝐴𝐵)
2928adantlr 747 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑧𝐴) → 𝐴𝐵)
3023, 29exlimddv 1850 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝐵)
31 id 22 . . . . . . 7 (𝑦 = 𝐴𝑦 = 𝐴)
32 id 22 . . . . . . 7 (𝑦 = 𝐵𝑦 = 𝐵)
3331, 32disjprg 4578 . . . . . 6 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3419, 20, 30, 33syl3anc 1318 . . . . 5 ((𝜑𝐴 ≠ ∅) → (Disj 𝑦 ∈ {𝐴, 𝐵}𝑦 ↔ (𝐴𝐵) = ∅))
3518, 34mpbird 246 . . . 4 ((𝜑𝐴 ≠ ∅) → Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)
36 breq1 4586 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (𝑧 ≼ ω ↔ {𝐴, 𝐵} ≼ ω))
37 disjeq1 4560 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → (Disj 𝑦𝑧 𝑦Disj 𝑦 ∈ {𝐴, 𝐵}𝑦))
3836, 37anbi12d 743 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) ↔ ({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦)))
39 unieq 4380 . . . . . . . 8 (𝑧 = {𝐴, 𝐵} → 𝑧 = {𝐴, 𝐵})
4039eleq1d 2672 . . . . . . 7 (𝑧 = {𝐴, 𝐵} → ( 𝑧𝑆 {𝐴, 𝐵} ∈ 𝑆))
4138, 40imbi12d 333 . . . . . 6 (𝑧 = {𝐴, 𝐵} → (((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆) ↔ (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆)))
42 unelldsys.s . . . . . . . . 9 (𝜑𝑆𝐿)
43 isldsys.l . . . . . . . . . . 11 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
44 biid 250 . . . . . . . . . . . . . 14 (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑠)
45 difeq2 3684 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
4645eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑧) ∈ 𝑠))
4746cbvralv 3147 . . . . . . . . . . . . . 14 (∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ↔ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠)
48 breq1 4586 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 ≼ ω ↔ 𝑧 ≼ ω))
49 disjeq1 4560 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (Disj 𝑦𝑥 𝑦Disj 𝑦𝑧 𝑦))
5048, 49anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)))
51 unieq 4380 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 𝑥 = 𝑧)
5251eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ( 𝑥𝑠 𝑧𝑠))
5350, 52imbi12d 333 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5453cbvralv 3147 . . . . . . . . . . . . . 14 (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))
5544, 47, 543anbi123i 1244 . . . . . . . . . . . . 13 ((∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠)))
5655a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ 𝒫 𝒫 𝑂 → ((∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))))
5756rabbiia 3161 . . . . . . . . . . 11 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5843, 57eqtri 2632 . . . . . . . . . 10 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑧𝑠 (𝑂𝑧) ∈ 𝑠 ∧ ∀𝑧 ∈ 𝒫 𝑠((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑠))}
5958isldsys 29546 . . . . . . . . 9 (𝑆𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
6042, 59sylib 207 . . . . . . . 8 (𝜑 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))))
6160simprd 478 . . . . . . 7 (𝜑 → (∅ ∈ 𝑆 ∧ ∀𝑧𝑆 (𝑂𝑧) ∈ 𝑆 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆)))
6261simp3d 1068 . . . . . 6 (𝜑 → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → 𝑧𝑆))
63 prelpwi 4842 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6410, 7, 63syl2anc 691 . . . . . 6 (𝜑 → {𝐴, 𝐵} ∈ 𝒫 𝑆)
6541, 62, 64rspcdva 3288 . . . . 5 (𝜑 → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6665adantr 480 . . . 4 ((𝜑𝐴 ≠ ∅) → (({𝐴, 𝐵} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, 𝐵}𝑦) → {𝐴, 𝐵} ∈ 𝑆))
6716, 35, 66mp2and 711 . . 3 ((𝜑𝐴 ≠ ∅) → {𝐴, 𝐵} ∈ 𝑆)
6813, 67eqeltrrd 2689 . 2 ((𝜑𝐴 ≠ ∅) → (𝐴𝐵) ∈ 𝑆)
699, 68pm2.61dane 2869 1 (𝜑 → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  cun 3538  cin 3539  c0 3874  𝒫 cpw 4108  {cpr 4127   cuni 4372  Disj wdisj 4553   class class class wbr 4583  ωcom 6957  cdom 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-cda 8873
This theorem is referenced by:  ldgenpisyslem1  29553
  Copyright terms: Public domain W3C validator