Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpwi Structured version   Visualization version   GIF version

Theorem prelpwi 4842
 Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.)
Assertion
Ref Expression
prelpwi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)

Proof of Theorem prelpwi
StepHypRef Expression
1 prelpw 4841 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
21ibi 255 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977  𝒫 cpw 4108  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128 This theorem is referenced by:  inelfi  8207  elss2prb  13123  isdrs2  16762  usgra1  25902  usgraexmplef  25929  cusgraexi  25997  cusgrafilem2  26008  unelsiga  29524  unelldsys  29548  measxun2  29600  saluncl  39213  cusgrexi  40662  cusgrfilem2  40672  umgr2v2e  40741  vdegp1bi-av  40753  eupth2lem3lem5  41400  lincvalpr  42001  ldepspr  42056  zlmodzxzldeplem3  42085  zlmodzxzldep  42087  ldepsnlinc  42091
 Copyright terms: Public domain W3C validator