Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1 Structured version   Visualization version   GIF version

Theorem disjeq1 4560
 Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3621 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 disjss1 4559 . . 3 (𝐵𝐴 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
4 eqimss 3620 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 disjss1 4559 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
73, 6impbid 201 1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ⊆ wss 3540  Disj wdisj 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-rmo 2904  df-in 3547  df-ss 3554  df-disj 4554 This theorem is referenced by:  disjeq1d  4561  volfiniun  23122  disjrnmpt  28780  iundisj2cnt  28945  unelldsys  29548  sigapildsys  29552  ldgenpisyslem1  29553  rossros  29570  measvun  29599  pmeasmono  29713  pmeasadd  29714  meadjuni  39350
 Copyright terms: Public domain W3C validator