Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > umgr2edgneu | Structured version Visualization version GIF version |
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgra2edg1 25912. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.) |
Ref | Expression |
---|---|
umgrvad2edg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgr2edgneu | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrvad2edg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | umgrvad2edg 40440 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) |
3 | 3simpc 1053 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → (𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦)) | |
4 | neneq 2788 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ¬ 𝑥 = 𝑦) | |
5 | 4 | 3ad2ant1 1075 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ¬ 𝑥 = 𝑦) |
6 | 3, 5 | jca 553 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
7 | 6 | reximi 2994 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
8 | 7 | reximi 2994 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 (𝑥 ≠ 𝑦 ∧ 𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦)) |
10 | rexanali 2981 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
11 | 10 | rexbii 3023 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
12 | rexnal 2978 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐸 ¬ ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) | |
13 | 11, 12 | bitri 263 | . . . 4 ⊢ (∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
14 | 9, 13 | sylib 207 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦)) |
15 | 14 | intnand 953 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
16 | eleq2 2677 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ 𝑦)) | |
17 | 16 | reu4 3367 | . 2 ⊢ (∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ↔ (∃𝑥 ∈ 𝐸 𝑁 ∈ 𝑥 ∧ ∀𝑥 ∈ 𝐸 ∀𝑦 ∈ 𝐸 ((𝑁 ∈ 𝑥 ∧ 𝑁 ∈ 𝑦) → 𝑥 = 𝑦))) |
18 | 15, 17 | sylnibr 318 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ 𝐸 𝑁 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ∃!wreu 2898 {cpr 4127 ‘cfv 5804 UMGraph cumgr 25748 Edgcedga 25792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-umgr 25750 df-edga 25793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |