Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version |
Description: From inequality to non equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2787 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1475 ≠ wne 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-ne 2782 |
This theorem is referenced by: necon3ad 2795 nelsnOLD 4160 hash2prd 13114 fprodn0f 14561 gcd2n0cl 15069 lcmfunsnlem2lem1 15189 structiedg0val 25699 n0p 38234 supxrge 38495 elprn1 38700 elprn2 38701 itgcoscmulx 38861 fourierdlem41 39041 elaa2 39127 sge0cl 39274 meadjiunlem 39358 hoidmvlelem2 39486 hspmbllem1 39516 fpropnf1 40337 umgr2edgneu 40441 clwwlknclwwlkdifs 41181 av-numclwwlk3lem 41538 |
Copyright terms: Public domain | W3C validator |