MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem7 Structured version   Visualization version   GIF version

Theorem ttukeylem7 9220
Description: Lemma for ttukey 9223. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem7 (𝜑 → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝜑,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑦)

Proof of Theorem ttukeylem7
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . . 4 (card‘( 𝐴𝐵)) ∈ V
21sucid 5721 . . 3 (card‘( 𝐴𝐵)) ∈ suc (card‘( 𝐴𝐵))
3 ttukeylem.1 . . . 4 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
4 ttukeylem.2 . . . 4 (𝜑𝐵𝐴)
5 ttukeylem.3 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
6 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
73, 4, 5, 6ttukeylem6 9219 . . 3 ((𝜑 ∧ (card‘( 𝐴𝐵)) ∈ suc (card‘( 𝐴𝐵))) → (𝐺‘(card‘( 𝐴𝐵))) ∈ 𝐴)
82, 7mpan2 703 . 2 (𝜑 → (𝐺‘(card‘( 𝐴𝐵))) ∈ 𝐴)
93, 4, 5, 6ttukeylem4 9217 . . 3 (𝜑 → (𝐺‘∅) = 𝐵)
10 0elon 5695 . . . . 5 ∅ ∈ On
11 cardon 8653 . . . . 5 (card‘( 𝐴𝐵)) ∈ On
12 0ss 3924 . . . . 5 ∅ ⊆ (card‘( 𝐴𝐵))
1310, 11, 123pm3.2i 1232 . . . 4 (∅ ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ ∅ ⊆ (card‘( 𝐴𝐵)))
143, 4, 5, 6ttukeylem5 9218 . . . 4 ((𝜑 ∧ (∅ ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ ∅ ⊆ (card‘( 𝐴𝐵)))) → (𝐺‘∅) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
1513, 14mpan2 703 . . 3 (𝜑 → (𝐺‘∅) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
169, 15eqsstr3d 3603 . 2 (𝜑𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))))
17 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)
18 ssun1 3738 . . . . . . . 8 𝑦 ⊆ (𝑦𝐵)
19 undif1 3995 . . . . . . . 8 ((𝑦𝐵) ∪ 𝐵) = (𝑦𝐵)
2018, 19sseqtr4i 3601 . . . . . . 7 𝑦 ⊆ ((𝑦𝐵) ∪ 𝐵)
21 simpl 472 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝜑)
22 f1ocnv 6062 . . . . . . . . . . . . . . . . 17 (𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) → 𝐹:( 𝐴𝐵)–1-1-onto→(card‘( 𝐴𝐵)))
23 f1of 6050 . . . . . . . . . . . . . . . . 17 (𝐹:( 𝐴𝐵)–1-1-onto→(card‘( 𝐴𝐵)) → 𝐹:( 𝐴𝐵)⟶(card‘( 𝐴𝐵)))
243, 22, 233syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐹:( 𝐴𝐵)⟶(card‘( 𝐴𝐵)))
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝐹:( 𝐴𝐵)⟶(card‘( 𝐴𝐵)))
26 eldifi 3694 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑦𝐵) → 𝑎𝑦)
2726ad2antll 761 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎𝑦)
28 simprll 798 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑦𝐴)
29 elunii 4377 . . . . . . . . . . . . . . . . 17 ((𝑎𝑦𝑦𝐴) → 𝑎 𝐴)
3027, 28, 29syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 𝐴)
31 eldifn 3695 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝑦𝐵) → ¬ 𝑎𝐵)
3231ad2antll 761 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ¬ 𝑎𝐵)
3330, 32eldifd 3551 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ ( 𝐴𝐵))
3425, 33ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ∈ (card‘( 𝐴𝐵)))
35 onelon 5665 . . . . . . . . . . . . . 14 (((card‘( 𝐴𝐵)) ∈ On ∧ (𝐹𝑎) ∈ (card‘( 𝐴𝐵))) → (𝐹𝑎) ∈ On)
3611, 34, 35sylancr 694 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ∈ On)
37 suceloni 6905 . . . . . . . . . . . . 13 ((𝐹𝑎) ∈ On → suc (𝐹𝑎) ∈ On)
3836, 37syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ∈ On)
3911a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (card‘( 𝐴𝐵)) ∈ On)
4011onordi 5749 . . . . . . . . . . . . 13 Ord (card‘( 𝐴𝐵))
41 ordsucss 6910 . . . . . . . . . . . . 13 (Ord (card‘( 𝐴𝐵)) → ((𝐹𝑎) ∈ (card‘( 𝐴𝐵)) → suc (𝐹𝑎) ⊆ (card‘( 𝐴𝐵))))
4240, 34, 41mpsyl 66 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))
433, 4, 5, 6ttukeylem5 9218 . . . . . . . . . . . 12 ((𝜑 ∧ (suc (𝐹𝑎) ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ suc (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))) → (𝐺‘suc (𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
4421, 38, 39, 42, 43syl13anc 1320 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘suc (𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
45 ssun2 3739 . . . . . . . . . . . . 13 if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅) ⊆ ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))
46 eloni 5650 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑎) ∈ On → Ord (𝐹𝑎))
47 ordunisuc 6924 . . . . . . . . . . . . . . . . . 18 (Ord (𝐹𝑎) → suc (𝐹𝑎) = (𝐹𝑎))
4836, 46, 473syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) = (𝐹𝑎))
4948fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹 suc (𝐹𝑎)) = (𝐹‘(𝐹𝑎)))
503adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
51 f1ocnvfv2 6433 . . . . . . . . . . . . . . . . 17 ((𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵) ∧ 𝑎 ∈ ( 𝐴𝐵)) → (𝐹‘(𝐹𝑎)) = 𝑎)
5250, 33, 51syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹‘(𝐹𝑎)) = 𝑎)
5349, 52eqtr2d 2645 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 = (𝐹 suc (𝐹𝑎)))
54 velsn 4141 . . . . . . . . . . . . . . 15 (𝑎 ∈ {(𝐹 suc (𝐹𝑎))} ↔ 𝑎 = (𝐹 suc (𝐹𝑎)))
5553, 54sylibr 223 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ {(𝐹 suc (𝐹𝑎))})
5648fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺 suc (𝐹𝑎)) = (𝐺‘(𝐹𝑎)))
57 ordelss 5656 . . . . . . . . . . . . . . . . . . . . 21 ((Ord (card‘( 𝐴𝐵)) ∧ (𝐹𝑎) ∈ (card‘( 𝐴𝐵))) → (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))
5840, 34, 57sylancr 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))
593, 4, 5, 6ttukeylem5 9218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝐹𝑎) ∈ On ∧ (card‘( 𝐴𝐵)) ∈ On ∧ (𝐹𝑎) ⊆ (card‘( 𝐴𝐵)))) → (𝐺‘(𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
6021, 36, 39, 58, 59syl13anc 1320 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘(𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
6156, 60eqsstrd 3602 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺 suc (𝐹𝑎)) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
62 simprlr 799 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)
6361, 62sstrd 3578 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺 suc (𝐹𝑎)) ⊆ 𝑦)
6453, 27eqeltrrd 2689 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹 suc (𝐹𝑎)) ∈ 𝑦)
6564snssd 4281 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → {(𝐹 suc (𝐹𝑎))} ⊆ 𝑦)
6663, 65unssd 3751 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ⊆ 𝑦)
673, 4, 5ttukeylem2 9215 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝐴 ∧ ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ⊆ 𝑦)) → ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴)
6821, 28, 66, 67syl12anc 1316 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴)
6968iftrued 4044 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅) = {(𝐹 suc (𝐹𝑎))})
7055, 69eleqtrrd 2691 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))
7145, 70sseldi 3566 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅)))
723, 4, 5, 6ttukeylem3 9216 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc (𝐹𝑎) ∈ On) → (𝐺‘suc (𝐹𝑎)) = if(suc (𝐹𝑎) = suc (𝐹𝑎), if(suc (𝐹𝑎) = ∅, 𝐵, (𝐺 “ suc (𝐹𝑎))), ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))))
7338, 72syldan 486 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘suc (𝐹𝑎)) = if(suc (𝐹𝑎) = suc (𝐹𝑎), if(suc (𝐹𝑎) = ∅, 𝐵, (𝐺 “ suc (𝐹𝑎))), ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))))
74 sucidg 5720 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑎) ∈ (card‘( 𝐴𝐵)) → (𝐹𝑎) ∈ suc (𝐹𝑎))
7534, 74syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐹𝑎) ∈ suc (𝐹𝑎))
76 ordirr 5658 . . . . . . . . . . . . . . . . . 18 (Ord (𝐹𝑎) → ¬ (𝐹𝑎) ∈ (𝐹𝑎))
7736, 46, 763syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ¬ (𝐹𝑎) ∈ (𝐹𝑎))
78 nelne1 2878 . . . . . . . . . . . . . . . . 17 (((𝐹𝑎) ∈ suc (𝐹𝑎) ∧ ¬ (𝐹𝑎) ∈ (𝐹𝑎)) → suc (𝐹𝑎) ≠ (𝐹𝑎))
7975, 77, 78syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ≠ (𝐹𝑎))
8079, 48neeqtrrd 2856 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → suc (𝐹𝑎) ≠ suc (𝐹𝑎))
8180neneqd 2787 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → ¬ suc (𝐹𝑎) = suc (𝐹𝑎))
8281iffalsed 4047 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → if(suc (𝐹𝑎) = suc (𝐹𝑎), if(suc (𝐹𝑎) = ∅, 𝐵, (𝐺 “ suc (𝐹𝑎))), ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅))) = ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅)))
8373, 82eqtrd 2644 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → (𝐺‘suc (𝐹𝑎)) = ((𝐺 suc (𝐹𝑎)) ∪ if(((𝐺 suc (𝐹𝑎)) ∪ {(𝐹 suc (𝐹𝑎))}) ∈ 𝐴, {(𝐹 suc (𝐹𝑎))}, ∅)))
8471, 83eleqtrrd 2691 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ (𝐺‘suc (𝐹𝑎)))
8544, 84sseldd 3569 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦) ∧ 𝑎 ∈ (𝑦𝐵))) → 𝑎 ∈ (𝐺‘(card‘( 𝐴𝐵))))
8685expr 641 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝑎 ∈ (𝑦𝐵) → 𝑎 ∈ (𝐺‘(card‘( 𝐴𝐵)))))
8786ssrdv 3574 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝑦𝐵) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
8816adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → 𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))))
8987, 88unssd 3751 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → ((𝑦𝐵) ∪ 𝐵) ⊆ (𝐺‘(card‘( 𝐴𝐵))))
9020, 89syl5ss 3579 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → 𝑦 ⊆ (𝐺‘(card‘( 𝐴𝐵))))
9117, 90eqssd 3585 . . . . 5 ((𝜑 ∧ (𝑦𝐴 ∧ (𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦)) → (𝐺‘(card‘( 𝐴𝐵))) = 𝑦)
9291expr 641 . . . 4 ((𝜑𝑦𝐴) → ((𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦 → (𝐺‘(card‘( 𝐴𝐵))) = 𝑦))
93 npss 3679 . . . 4 (¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦 ↔ ((𝐺‘(card‘( 𝐴𝐵))) ⊆ 𝑦 → (𝐺‘(card‘( 𝐴𝐵))) = 𝑦))
9492, 93sylibr 223 . . 3 ((𝜑𝑦𝐴) → ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)
9594ralrimiva 2949 . 2 (𝜑 → ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)
96 sseq2 3590 . . . 4 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (𝐵𝑥𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵)))))
97 psseq1 3656 . . . . . 6 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (𝑥𝑦 ↔ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦))
9897notbid 307 . . . . 5 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (¬ 𝑥𝑦 ↔ ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦))
9998ralbidv 2969 . . . 4 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → (∀𝑦𝐴 ¬ 𝑥𝑦 ↔ ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦))
10096, 99anbi12d 743 . . 3 (𝑥 = (𝐺‘(card‘( 𝐴𝐵))) → ((𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦) ↔ (𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))) ∧ ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)))
101100rspcev 3282 . 2 (((𝐺‘(card‘( 𝐴𝐵))) ∈ 𝐴 ∧ (𝐵 ⊆ (𝐺‘(card‘( 𝐴𝐵))) ∧ ∀𝑦𝐴 ¬ (𝐺‘(card‘( 𝐴𝐵))) ⊊ 𝑦)) → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
1028, 16, 95, 101syl12anc 1316 1 (𝜑 → ∃𝑥𝐴 (𝐵𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  wpss 3541  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   cuni 4372  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  wf 5800  1-1-ontowf1o 5803  cfv 5804  recscrecs 7354  Fincfn 7841  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-fin 7845  df-card 8648
This theorem is referenced by:  ttukey2g  9221
  Copyright terms: Public domain W3C validator