Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem2 Structured version   Visualization version   GIF version

Theorem ttukeylem2 9215
 Description: Lemma for ttukey 9223. A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
Assertion
Ref Expression
ttukeylem2 ((𝜑 ∧ (𝐶𝐴𝐷𝐶)) → 𝐷𝐴)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem2
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝜑𝐷𝐶) → 𝐷𝐶)
2 sspwb 4844 . . . . . 6 (𝐷𝐶 ↔ 𝒫 𝐷 ⊆ 𝒫 𝐶)
31, 2sylib 207 . . . . 5 ((𝜑𝐷𝐶) → 𝒫 𝐷 ⊆ 𝒫 𝐶)
4 ssrin 3800 . . . . 5 (𝒫 𝐷 ⊆ 𝒫 𝐶 → (𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin))
5 sstr2 3575 . . . . 5 ((𝒫 𝐷 ∩ Fin) ⊆ (𝒫 𝐶 ∩ Fin) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
63, 4, 53syl 18 . . . 4 ((𝜑𝐷𝐶) → ((𝒫 𝐶 ∩ Fin) ⊆ 𝐴 → (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
7 ttukeylem.1 . . . . . 6 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
8 ttukeylem.2 . . . . . 6 (𝜑𝐵𝐴)
9 ttukeylem.3 . . . . . 6 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
107, 8, 9ttukeylem1 9214 . . . . 5 (𝜑 → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
1110adantr 480 . . . 4 ((𝜑𝐷𝐶) → (𝐶𝐴 ↔ (𝒫 𝐶 ∩ Fin) ⊆ 𝐴))
127, 8, 9ttukeylem1 9214 . . . . 5 (𝜑 → (𝐷𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
1312adantr 480 . . . 4 ((𝜑𝐷𝐶) → (𝐷𝐴 ↔ (𝒫 𝐷 ∩ Fin) ⊆ 𝐴))
146, 11, 133imtr4d 282 . . 3 ((𝜑𝐷𝐶) → (𝐶𝐴𝐷𝐴))
1514impancom 455 . 2 ((𝜑𝐶𝐴) → (𝐷𝐶𝐷𝐴))
1615impr 647 1 ((𝜑 ∧ (𝐶𝐴𝐷𝐶)) → 𝐷𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   ∈ wcel 1977   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  ∪ cuni 4372  –1-1-onto→wf1o 5803  ‘cfv 5804  Fincfn 7841  cardccrd 8644 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-en 7842  df-dom 7843  df-fin 7845 This theorem is referenced by:  ttukeylem6  9219  ttukeylem7  9220
 Copyright terms: Public domain W3C validator