MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglowdim2ln Structured version   Visualization version   GIF version

Theorem tglowdim2ln 25346
Description: There is always one point outside of any line. Theorem 6.25 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 16-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglowdim2l.1 (𝜑𝐺DimTarskiG≥2)
tglowdim2ln.a (𝜑𝐴𝑃)
tglowdim2ln.b (𝜑𝐵𝑃)
tglowdim2ln.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
tglowdim2ln (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Distinct variable groups:   𝐺,𝑐   𝐼,𝑐   𝑃,𝑐   𝜑,𝑐   𝐴,𝑐   𝐵,𝑐   𝐿,𝑐

Proof of Theorem tglowdim2ln
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglowdim2l.1 . . . . 5 (𝜑𝐺DimTarskiG≥2)
61, 2, 3, 4, 5tglowdim2l 25345 . . . 4 (𝜑 → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
76adantr 480 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
8 simplr3 1098 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧𝑃)
9 simpllr 795 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
10 eleq1 2676 . . . . . . . . . . 11 (𝑐 = 𝑧 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑧 ∈ (𝐴𝐿𝐵)))
1110rspcva 3280 . . . . . . . . . 10 ((𝑧𝑃 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → 𝑧 ∈ (𝐴𝐿𝐵))
128, 9, 11syl2anc 691 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝐴𝐿𝐵))
134ad3antrrr 762 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐺 ∈ TarskiG)
14 simplr1 1096 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑃)
15 simplr2 1097 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑃)
16 simpr 476 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → ¬ 𝑎 = 𝑏)
1716neqned 2789 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑏)
18 tglowdim2ln.a . . . . . . . . . . . 12 (𝜑𝐴𝑃)
1918ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝑃)
20 tglowdim2ln.b . . . . . . . . . . . 12 (𝜑𝐵𝑃)
2120ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐵𝑃)
22 tglowdim2ln.1 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
2322ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝐴𝐵)
241, 2, 3, 13, 19, 21, 23tgelrnln 25325 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) ∈ ran 𝐿)
25 eleq1 2676 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑎 ∈ (𝐴𝐿𝐵)))
2625rspcva 3280 . . . . . . . . . . 11 ((𝑎𝑃 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → 𝑎 ∈ (𝐴𝐿𝐵))
2714, 9, 26syl2anc 691 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (𝐴𝐿𝐵))
28 eleq1 2676 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑐 ∈ (𝐴𝐿𝐵) ↔ 𝑏 ∈ (𝐴𝐿𝐵)))
2928rspcva 3280 . . . . . . . . . . 11 ((𝑏𝑃 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → 𝑏 ∈ (𝐴𝐿𝐵))
3015, 9, 29syl2anc 691 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (𝐴𝐿𝐵))
311, 2, 3, 13, 14, 15, 17, 17, 24, 27, 30tglinethru 25331 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → (𝐴𝐿𝐵) = (𝑎𝐿𝑏))
3212, 31eleqtrd 2690 . . . . . . . 8 ((((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) ∧ ¬ 𝑎 = 𝑏) → 𝑧 ∈ (𝑎𝐿𝑏))
3332ex 449 . . . . . . 7 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (¬ 𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3433orrd 392 . . . . . 6 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑎 = 𝑏𝑧 ∈ (𝑎𝐿𝑏)))
3534orcomd 402 . . . . 5 (((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) ∧ (𝑎𝑃𝑏𝑃𝑧𝑃)) → (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3635ralrimivvva 2955 . . . 4 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
37 dfral2 2977 . . . . . . . 8 (∀𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
3837ralbii 2963 . . . . . . 7 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
39 ralnex 2975 . . . . . . 7 (∀𝑏𝑃 ¬ ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4038, 39bitri 263 . . . . . 6 (∀𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4140ralbii 2963 . . . . 5 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
42 ralnex 2975 . . . . 5 (∀𝑎𝑃 ¬ ∃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4341, 42bitri 263 . . . 4 (∀𝑎𝑃𝑏𝑃𝑧𝑃 (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏) ↔ ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
4436, 43sylib 207 . . 3 ((𝜑 ∧ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵)) → ¬ ∃𝑎𝑃𝑏𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑎𝐿𝑏) ∨ 𝑎 = 𝑏))
457, 44pm2.65da 598 . 2 (𝜑 → ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
46 rexnal 2978 . 2 (∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵) ↔ ¬ ∀𝑐𝑃 𝑐 ∈ (𝐴𝐿𝐵))
4745, 46sylibr 223 1 (𝜑 → ∃𝑐𝑃 ¬ 𝑐 ∈ (𝐴𝐿𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  2c2 10947  Basecbs 15695  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206
This theorem is referenced by:  colperpex  25425  cgrg3col4  25534
  Copyright terms: Public domain W3C validator