MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Visualization version   GIF version

Theorem swrd0 13286
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0 (∅ substr ⟨𝐹, 𝐿⟩) = ∅

Proof of Theorem swrd0
Dummy variables 𝑥 𝑠 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5070 . . . 4 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) ↔ (∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
2 opelxp 5070 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 swrdval 13269 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅))
4 fzonlt0 12360 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅))
54biimprd 237 . . . . . . . . . . . . . 14 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿))
65con2d 128 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅))
76impcom 445 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅)
8 ss0 3926 . . . . . . . . . . . 12 ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅)
97, 8nsyl 134 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅)
10 dm0 5260 . . . . . . . . . . . . 13 dom ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1211sseq2d 3596 . . . . . . . . . . 11 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅))
139, 12mtbird 314 . . . . . . . . . 10 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅)
1413iffalsed 4047 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
15 0ss 3924 . . . . . . . . . . . . 13 ∅ ⊆ ∅
1615a1i 11 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆ ∅)
174biimpac 502 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅)
1810a1i 11 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1916, 17, 183sstr4d 3611 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅)
2019iftrued 4044 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))))
21 zre 11258 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
22 zre 11258 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
23 lenlt 9995 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿𝐹 ↔ ¬ 𝐹 < 𝐿))
2423bicomd 212 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬ 𝐹 < 𝐿𝐿𝐹))
2521, 22, 24syl2anr 494 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿𝐿𝐹))
26 fzo0n 12359 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
2725, 26bitrd 267 . . . . . . . . . . . . . . 15 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (0..^(𝐿𝐹)) = ∅))
2827biimpac 502 . . . . . . . . . . . . . 14 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿𝐹)) = ∅)
2928mpteq1d 4666 . . . . . . . . . . . . 13 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
3029dmeqd 5248 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
31 ral0 4028 . . . . . . . . . . . . 13 𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V
32 dmmptg 5549 . . . . . . . . . . . . 13 (∀𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3331, 32mp1i 13 . . . . . . . . . . . 12 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3430, 33eqtrd 2644 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
35 mptrel 5170 . . . . . . . . . . . 12 Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹)))
36 reldm0 5264 . . . . . . . . . . . 12 (Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3735, 36mp1i 13 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3834, 37mpbird 246 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3920, 38eqtrd 2644 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
4014, 39pm2.61ian 827 . . . . . . . 8 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
41403adant1 1072 . . . . . . 7 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
423, 41eqtrd 2644 . . . . . 6 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
43423expb 1258 . . . . 5 ((∅ ∈ V ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
442, 43sylan2b 491 . . . 4 ((∅ ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
451, 44sylbi 206 . . 3 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ (V × (ℤ × ℤ)) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
46 df-substr 13158 . . . 4 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅))
47 ovex 6577 . . . . . 6 (0..^((2nd𝑏) − (1st𝑏))) ∈ V
4847mptex 6390 . . . . 5 (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))) ∈ V
49 0ex 4718 . . . . 5 ∅ ∈ V
5048, 49ifex 4106 . . . 4 if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑧 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑧 + (1st𝑏)))), ∅) ∈ V
5146, 50dmmpt2 7129 . . 3 dom substr = (V × (ℤ × ℤ))
5245, 51eleq2s 2706 . 2 (⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
53 df-ov 6552 . . 3 (∅ substr ⟨𝐹, 𝐿⟩) = ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩)
54 ndmfv 6128 . . 3 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → ( substr ‘⟨∅, ⟨𝐹, 𝐿⟩⟩) = ∅)
5553, 54syl5eq 2656 . 2 (¬ ⟨∅, ⟨𝐹, 𝐿⟩⟩ ∈ dom substr → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
5652, 55pm2.61i 175 1 (∅ substr ⟨𝐹, 𝐿⟩) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  c0 3874  ifcif 4036  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  Rel wrel 5043  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cz 11254  ..^cfzo 12334   substr csubstr 13150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-substr 13158
This theorem is referenced by:  cshword  13388  pfx0  40248  cshword2  40300
  Copyright terms: Public domain W3C validator