MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Unicode version

Theorem swrd0 12670
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0  |-  ( (/) substr  <. F ,  L >. )  =  (/)

Proof of Theorem swrd0
Dummy variables  x  s  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5038 . . . 4  |-  ( <. (/)
,  <. F ,  L >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  <->  ( (/)  e.  _V  /\ 
<. F ,  L >.  e.  ( ZZ  X.  ZZ ) ) )
2 opelxp 5038 . . . . 5  |-  ( <. F ,  L >.  e.  ( ZZ  X.  ZZ ) 
<->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
3 swrdval 12653 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  if ( ( F..^ L )  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) ) ,  (/) ) )
4 fzonlt0 11847 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( F..^ L
)  =  (/) ) )
54biimprd 223 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( F..^ L
)  =  (/)  ->  -.  F  <  L ) )
65con2d 115 . . . . . . . . . . . . 13  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( F  <  L  ->  -.  ( F..^ L
)  =  (/) ) )
76impcom 430 . . . . . . . . . . . 12  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  =  (/) )
8 ss0 3825 . . . . . . . . . . . 12  |-  ( ( F..^ L )  C_  (/) 
->  ( F..^ L )  =  (/) )
97, 8nsyl 121 . . . . . . . . . . 11  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  (/) )
10 dm0 5226 . . . . . . . . . . . . 13  |-  dom  (/)  =  (/)
1110a1i 11 . . . . . . . . . . . 12  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1211sseq2d 3527 . . . . . . . . . . 11  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( ( F..^ L )  C_  dom  (/)  <->  ( F..^ L )  C_  (/) ) )
139, 12mtbird 301 . . . . . . . . . 10  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  dom  (/) )
1413iffalsed 3955 . . . . . . . . 9  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
15 0ss 3823 . . . . . . . . . . . . 13  |-  (/)  C_  (/)
1615a1i 11 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  (/)  C_  (/) )
174biimpac 486 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  =  (/) )
1810a1i 11 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1916, 17, 183sstr4d 3542 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  C_  dom  (/) )
2019iftrued 3952 . . . . . . . . . 10  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) )
21 zre 10889 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
22 zre 10889 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ZZ  ->  F  e.  RR )
23 lenlt 9680 . . . . . . . . . . . . . . . . . 18  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( L  <_  F  <->  -.  F  <  L ) )
2423bicomd 201 . . . . . . . . . . . . . . . . 17  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
2521, 22, 24syl2anr 478 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
26 fzo0n 11846 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  F  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2725, 26bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2827biimpac 486 . . . . . . . . . . . . . 14  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( 0..^ ( L  -  F
) )  =  (/) )
2928mpteq1d 4538 . . . . . . . . . . . . 13  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) ) )
3029dmeqd 5215 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  dom  ( x  e.  (/)  |->  ( (/) `  ( x  +  F
) ) ) )
31 ral0 3937 . . . . . . . . . . . . 13  |-  A. x  e.  (/)  ( (/) `  (
x  +  F ) )  e.  _V
32 dmmptg 5510 . . . . . . . . . . . . 13  |-  ( A. x  e.  (/)  ( (/) `  ( x  +  F
) )  e.  _V  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3331, 32mp1i 12 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3430, 33eqtrd 2498 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
35 mptrel 5139 . . . . . . . . . . . 12  |-  Rel  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )
36 reldm0 5230 . . . . . . . . . . . 12  |-  ( Rel  ( x  e.  ( 0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  ->  ( ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/)  <->  dom  ( x  e.  (
0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  =  (/) ) )
3735, 36mp1i 12 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )  =  (/) 
<->  dom  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) ) )
3834, 37mpbird 232 . . . . . . . . . 10  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) )
3920, 38eqtrd 2498 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
4014, 39pm2.61ian 790 . . . . . . . 8  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L )  C_  dom  (/)
,  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) ) ,  (/) )  =  (/) )
41403adant1 1014 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
423, 41eqtrd 2498 . . . . . 6  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
43423expb 1197 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( (/) substr  <. F ,  L >. )  =  (/) )
442, 43sylan2b 475 . . . 4  |-  ( (
(/)  e.  _V  /\  <. F ,  L >.  e.  ( ZZ  X.  ZZ ) )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
451, 44sylbi 195 . . 3  |-  ( <. (/)
,  <. F ,  L >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
46 df-substr 12550 . . . 4  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( z  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
z  +  ( 1st `  b ) ) ) ) ,  (/) ) )
47 ovex 6324 . . . . . 6  |-  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) )  e.  _V
4847mptex 6144 . . . . 5  |-  ( z  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
z  +  ( 1st `  b ) ) ) )  e.  _V
49 0ex 4587 . . . . 5  |-  (/)  e.  _V
5048, 49ifex 4013 . . . 4  |-  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( z  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( z  +  ( 1st `  b
) ) ) ) ,  (/) )  e.  _V
5146, 50dmmpt2 6869 . . 3  |-  dom substr  =  ( _V  X.  ( ZZ 
X.  ZZ ) )
5245, 51eleq2s 2565 . 2  |-  ( <. (/)
,  <. F ,  L >. >.  e.  dom substr  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
53 df-ov 6299 . . 3  |-  ( (/) substr  <. F ,  L >. )  =  ( substr  `  <. (/)
,  <. F ,  L >. >. )
54 ndmfv 5896 . . 3  |-  ( -. 
<. (/) ,  <. F ,  L >. >.  e.  dom substr  ->  ( substr  ` 
<. (/) ,  <. F ,  L >. >. )  =  (/) )
5553, 54syl5eq 2510 . 2  |-  ( -. 
<. (/) ,  <. F ,  L >. >.  e.  dom substr  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
5652, 55pm2.61i 164 1  |-  ( (/) substr  <. F ,  L >. )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ifcif 3944   <.cop 4038   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   dom cdm 5008   Rel wrel 5013   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   RRcr 9508   0cc0 9509    + caddc 9512    < clt 9645    <_ cle 9646    - cmin 9824   ZZcz 10885  ..^cfzo 11821   substr csubstr 12542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822  df-substr 12550
This theorem is referenced by:  cshword  12774  pfx0  32502  cshword2  32555
  Copyright terms: Public domain W3C validator