MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd0 Structured version   Unicode version

Theorem swrd0 12780
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0  |-  ( (/) substr  <. F ,  L >. )  =  (/)

Proof of Theorem swrd0
Dummy variables  x  s  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 4879 . . . 4  |-  ( <. (/)
,  <. F ,  L >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  <->  ( (/)  e.  _V  /\ 
<. F ,  L >.  e.  ( ZZ  X.  ZZ ) ) )
2 opelxp 4879 . . . . 5  |-  ( <. F ,  L >.  e.  ( ZZ  X.  ZZ ) 
<->  ( F  e.  ZZ  /\  L  e.  ZZ ) )
3 swrdval 12763 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  if ( ( F..^ L )  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) ) ,  (/) ) )
4 fzonlt0 11941 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( F..^ L
)  =  (/) ) )
54biimprd 226 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( F..^ L
)  =  (/)  ->  -.  F  <  L ) )
65con2d 118 . . . . . . . . . . . . 13  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( F  <  L  ->  -.  ( F..^ L
)  =  (/) ) )
76impcom 431 . . . . . . . . . . . 12  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  =  (/) )
8 ss0 3793 . . . . . . . . . . . 12  |-  ( ( F..^ L )  C_  (/) 
->  ( F..^ L )  =  (/) )
97, 8nsyl 124 . . . . . . . . . . 11  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  (/) )
10 dm0 5063 . . . . . . . . . . . . 13  |-  dom  (/)  =  (/)
1110a1i 11 . . . . . . . . . . . 12  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1211sseq2d 3492 . . . . . . . . . . 11  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( ( F..^ L )  C_  dom  (/)  <->  ( F..^ L )  C_  (/) ) )
139, 12mtbird 302 . . . . . . . . . 10  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  -.  ( F..^ L )  C_  dom  (/) )
1413iffalsed 3920 . . . . . . . . 9  |-  ( ( F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
15 0ss 3791 . . . . . . . . . . . . 13  |-  (/)  C_  (/)
1615a1i 11 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  (/)  C_  (/) )
174biimpac 488 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  =  (/) )
1810a1i 11 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  (/)  =  (/) )
1916, 17, 183sstr4d 3507 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( F..^ L )  C_  dom  (/) )
2019iftrued 3917 . . . . . . . . . 10  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) )
21 zre 10941 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
22 zre 10941 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ZZ  ->  F  e.  RR )
23 lenlt 9712 . . . . . . . . . . . . . . . . . 18  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( L  <_  F  <->  -.  F  <  L ) )
2423bicomd 204 . . . . . . . . . . . . . . . . 17  |-  ( ( L  e.  RR  /\  F  e.  RR )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
2521, 22, 24syl2anr 480 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  L  <_  F ) )
26 fzo0n 11940 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  F  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2725, 26bitrd 256 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  ( -.  F  < 
L  <->  ( 0..^ ( L  -  F ) )  =  (/) ) )
2827biimpac 488 . . . . . . . . . . . . . 14  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( 0..^ ( L  -  F
) )  =  (/) )
2928mpteq1d 4502 . . . . . . . . . . . . 13  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) ) )
3029dmeqd 5052 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  dom  ( x  e.  (/)  |->  ( (/) `  ( x  +  F
) ) ) )
31 ral0 3902 . . . . . . . . . . . . 13  |-  A. x  e.  (/)  ( (/) `  (
x  +  F ) )  e.  _V
32 dmmptg 5347 . . . . . . . . . . . . 13  |-  ( A. x  e.  (/)  ( (/) `  ( x  +  F
) )  e.  _V  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3331, 32mp1i 13 . . . . . . . . . . . 12  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  (/)  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
3430, 33eqtrd 2463 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  dom  ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/) )
35 mptrel 4976 . . . . . . . . . . . 12  |-  Rel  (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )
36 reldm0 5067 . . . . . . . . . . . 12  |-  ( Rel  ( x  e.  ( 0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  ->  ( ( x  e.  ( 0..^ ( L  -  F ) )  |->  ( (/) `  (
x  +  F ) ) )  =  (/)  <->  dom  ( x  e.  (
0..^ ( L  -  F ) )  |->  (
(/) `  ( x  +  F ) ) )  =  (/) ) )
3735, 36mp1i 13 . . . . . . . . . . 11  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( (
x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) )  =  (/) 
<->  dom  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) ) )
3834, 37mpbird 235 . . . . . . . . . 10  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) )  =  (/) )
3920, 38eqtrd 2463 . . . . . . . . 9  |-  ( ( -.  F  <  L  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  ->  if (
( F..^ L ) 
C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
4014, 39pm2.61ian 797 . . . . . . . 8  |-  ( ( F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L )  C_  dom  (/)
,  ( x  e.  ( 0..^ ( L  -  F ) ) 
|->  ( (/) `  ( x  +  F ) ) ) ,  (/) )  =  (/) )
41403adant1 1023 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  if ( ( F..^ L
)  C_  dom  (/) ,  ( x  e.  ( 0..^ ( L  -  F
) )  |->  ( (/) `  ( x  +  F
) ) ) ,  (/) )  =  (/) )
423, 41eqtrd 2463 . . . . . 6  |-  ( (
(/)  e.  _V  /\  F  e.  ZZ  /\  L  e.  ZZ )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
43423expb 1206 . . . . 5  |-  ( (
(/)  e.  _V  /\  ( F  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( (/) substr  <. F ,  L >. )  =  (/) )
442, 43sylan2b 477 . . . 4  |-  ( (
(/)  e.  _V  /\  <. F ,  L >.  e.  ( ZZ  X.  ZZ ) )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
451, 44sylbi 198 . . 3  |-  ( <. (/)
,  <. F ,  L >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
46 df-substr 12660 . . . 4  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( z  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
z  +  ( 1st `  b ) ) ) ) ,  (/) ) )
47 ovex 6329 . . . . . 6  |-  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) )  e.  _V
4847mptex 6147 . . . . 5  |-  ( z  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
z  +  ( 1st `  b ) ) ) )  e.  _V
49 0ex 4552 . . . . 5  |-  (/)  e.  _V
5048, 49ifex 3977 . . . 4  |-  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( z  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( z  +  ( 1st `  b
) ) ) ) ,  (/) )  e.  _V
5146, 50dmmpt2 6873 . . 3  |-  dom substr  =  ( _V  X.  ( ZZ 
X.  ZZ ) )
5245, 51eleq2s 2530 . 2  |-  ( <. (/)
,  <. F ,  L >. >.  e.  dom substr  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
53 df-ov 6304 . . 3  |-  ( (/) substr  <. F ,  L >. )  =  ( substr  `  <. (/)
,  <. F ,  L >. >. )
54 ndmfv 5901 . . 3  |-  ( -. 
<. (/) ,  <. F ,  L >. >.  e.  dom substr  ->  ( substr  ` 
<. (/) ,  <. F ,  L >. >. )  =  (/) )
5553, 54syl5eq 2475 . 2  |-  ( -. 
<. (/) ,  <. F ,  L >. >.  e.  dom substr  ->  ( (/) substr  <. F ,  L >. )  =  (/) )
5652, 55pm2.61i 167 1  |-  ( (/) substr  <. F ,  L >. )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081    C_ wss 3436   (/)c0 3761   ifcif 3909   <.cop 4002   class class class wbr 4420    |-> cmpt 4479    X. cxp 4847   dom cdm 4849   Rel wrel 4854   ` cfv 5597  (class class class)co 6301   1stc1st 6801   2ndc2nd 6802   RRcr 9538   0cc0 9539    + caddc 9542    < clt 9675    <_ cle 9676    - cmin 9860   ZZcz 10937  ..^cfzo 11915   substr csubstr 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-er 7367  df-en 7574  df-dom 7575  df-sdom 7576  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-substr 12660
This theorem is referenced by:  cshword  12883  pfx0  38637  cshword2  38689
  Copyright terms: Public domain W3C validator