Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsq2 Structured version   Visualization version   GIF version

Theorem subsq2 12835
 Description: Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))))

Proof of Theorem subsq2
StepHypRef Expression
1 2cn 10968 . . . . . . . 8 2 ∈ ℂ
2 mulcl 9899 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
31, 2mpan 702 . . . . . . 7 (𝐵 ∈ ℂ → (2 · 𝐵) ∈ ℂ)
43adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
5 subadd23 10172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (2 · 𝐵) ∈ ℂ) → ((𝐴𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵)))
64, 5mpd3an3 1417 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + (2 · 𝐵)) = (𝐴 + ((2 · 𝐵) − 𝐵)))
7 2times 11022 . . . . . . . . 9 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
87oveq1d 6564 . . . . . . . 8 (𝐵 ∈ ℂ → ((2 · 𝐵) − 𝐵) = ((𝐵 + 𝐵) − 𝐵))
9 pncan 10166 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 + 𝐵) − 𝐵) = 𝐵)
109anidms 675 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵 + 𝐵) − 𝐵) = 𝐵)
118, 10eqtrd 2644 . . . . . . 7 (𝐵 ∈ ℂ → ((2 · 𝐵) − 𝐵) = 𝐵)
1211adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) − 𝐵) = 𝐵)
1312oveq2d 6565 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + ((2 · 𝐵) − 𝐵)) = (𝐴 + 𝐵))
146, 13eqtrd 2644 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + (2 · 𝐵)) = (𝐴 + 𝐵))
1514oveq1d 6564 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝐵) + (2 · 𝐵)) · (𝐴𝐵)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
16 subcl 10159 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
1716, 4, 16adddird 9944 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝐵) + (2 · 𝐵)) · (𝐴𝐵)) = (((𝐴𝐵) · (𝐴𝐵)) + ((2 · 𝐵) · (𝐴𝐵))))
1815, 17eqtr3d 2646 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴𝐵)) = (((𝐴𝐵) · (𝐴𝐵)) + ((2 · 𝐵) · (𝐴𝐵))))
19 subsq 12834 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
20 sqval 12784 . . . 4 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵)↑2) = ((𝐴𝐵) · (𝐴𝐵)))
2116, 20syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = ((𝐴𝐵) · (𝐴𝐵)))
2221oveq1d 6564 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))) = (((𝐴𝐵) · (𝐴𝐵)) + ((2 · 𝐵) · (𝐴𝐵))))
2318, 19, 223eqtr4d 2654 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴𝐵)↑2) + ((2 · 𝐵) · (𝐴𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  (class class class)co 6549  ℂcc 9813   + caddc 9818   · cmul 9820   − cmin 10145  2c2 10947  ↑cexp 12722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator