Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdm Structured version   Visualization version   GIF version

Theorem rlimdm 14130
 Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdm (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))

Proof of Theorem rlimdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5241 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 255 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 476 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 df-fv 5812 . . . . . . 7 ( ⇝𝑟𝐹) = (℩𝑦𝐹𝑟 𝑦)
5 vex 3176 . . . . . . . 8 𝑥 ∈ V
6 rlimuni.1 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶ℂ)
76adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹:𝐴⟶ℂ)
8 rlimuni.2 . . . . . . . . . . . . . 14 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
98adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞)
10 simprr 792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑦)
11 simprl 790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑥)
127, 9, 10, 11rlimuni 14129 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝑦 = 𝑥)
1312expr 641 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
14 breq2 4587 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
153, 14syl5ibrcom 236 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝑦 = 𝑥𝐹𝑟 𝑦))
1613, 15impbid 201 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1716adantr 480 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1817iota5 5788 . . . . . . . 8 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
195, 18mpan2 703 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
204, 19syl5eq 2656 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
213, 20breqtrrd 4611 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟𝐹))
2221ex 449 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
2322exlimdv 1848 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
242, 23syl5 33 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
25 rlimrel 14072 . . 3 Rel ⇝𝑟
2625releldmi 5283 . 2 (𝐹𝑟 ( ⇝𝑟𝐹) → 𝐹 ∈ dom ⇝𝑟 )
2724, 26impbid1 214 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583  dom cdm 5038  ℩cio 5766  ⟶wf 5800  ‘cfv 5804  supcsup 8229  ℂcc 9813  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ⇝𝑟 crli 14064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rlim 14068 This theorem is referenced by:  caucvgrlem2  14253  caucvg  14257  dchrisum0lem3  25008
 Copyright terms: Public domain W3C validator