MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdm Structured version   Unicode version

Theorem rlimdm 13041
Description: Two ways to express that a function has a limit. (The expression  (  ~~> r  `  F ) is sometimes useful as a shorthand for "the unique limit of the function  F"). (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1  |-  ( ph  ->  F : A --> CC )
rlimuni.2  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
Assertion
Ref Expression
rlimdm  |-  ( ph  ->  ( F  e.  dom  ~~> r  <-> 
F  ~~> r  (  ~~> r  `  F ) ) )

Proof of Theorem rlimdm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5047 . . . 4  |-  ( F  e.  dom  ~~> r  -> 
( F  e.  dom  ~~> r  <->  E. x  F  ~~> r  x ) )
21ibi 241 . . 3  |-  ( F  e.  dom  ~~> r  ->  E. x  F  ~~> r  x )
3 simpr 461 . . . . . 6  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  ~~> r  x )
4 df-fv 5438 . . . . . . 7  |-  (  ~~> r  `  F )  =  ( iota y F  ~~> r  y )
5 vex 2987 . . . . . . . 8  |-  x  e. 
_V
6 rlimuni.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : A --> CC )
76adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  F : A --> CC )
8 rlimuni.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
98adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  sup ( A ,  RR* ,  <  )  = +oo )
10 simprr 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  F  ~~> r  y )
11 simprl 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  F  ~~> r  x )
127, 9, 10, 11rlimuni 13040 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( F  ~~> r  x  /\  F  ~~> r  y ) )  ->  y  =  x )
1312expr 615 . . . . . . . . . . 11  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( F  ~~> r  y  ->  y  =  x ) )
14 breq2 4308 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F 
~~> r  y  <->  F  ~~> r  x ) )
153, 14syl5ibrcom 222 . . . . . . . . . . 11  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( y  =  x  ->  F  ~~> r  y ) )
1613, 15impbid 191 . . . . . . . . . 10  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( F  ~~> r  y  <->  y  =  x ) )
1716adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  x  e.  _V )  ->  ( F 
~~> r  y  <->  y  =  x ) )
1817iota5 5413 . . . . . . . 8  |-  ( ( ( ph  /\  F  ~~> r  x )  /\  x  e.  _V )  ->  ( iota y F  ~~> r  y )  =  x )
195, 18mpan2 671 . . . . . . 7  |-  ( (
ph  /\  F  ~~> r  x )  ->  ( iota y F  ~~> r  y )  =  x )
204, 19syl5eq 2487 . . . . . 6  |-  ( (
ph  /\  F  ~~> r  x )  ->  (  ~~> r  `  F )  =  x )
213, 20breqtrrd 4330 . . . . 5  |-  ( (
ph  /\  F  ~~> r  x )  ->  F  ~~> r  (  ~~> r  `  F ) )
2221ex 434 . . . 4  |-  ( ph  ->  ( F  ~~> r  x  ->  F  ~~> r  (  ~~> r  `  F ) ) )
2322exlimdv 1690 . . 3  |-  ( ph  ->  ( E. x  F  ~~> r  x  ->  F  ~~> r  (  ~~> r  `  F
) ) )
242, 23syl5 32 . 2  |-  ( ph  ->  ( F  e.  dom  ~~> r  ->  F  ~~> r  (  ~~> r  `  F ) ) )
25 rlimrel 12983 . . 3  |-  Rel  ~~> r
2625releldmi 5088 . 2  |-  ( F  ~~> r  (  ~~> r  `  F )  ->  F  e.  dom  ~~> r  )
2724, 26impbid1 203 1  |-  ( ph  ->  ( F  e.  dom  ~~> r  <-> 
F  ~~> r  (  ~~> r  `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   _Vcvv 2984   class class class wbr 4304   dom cdm 4852   iotacio 5391   -->wf 5426   ` cfv 5430   supcsup 7702   CCcc 9292   +oocpnf 9427   RR*cxr 9429    < clt 9430    ~~> r crli 12975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-seq 11819  df-exp 11878  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-rlim 12979
This theorem is referenced by:  caucvgrlem2  13164  caucvg  13168  dchrisum0lem3  22780
  Copyright terms: Public domain W3C validator