MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlghm Structured version   Visualization version   GIF version

Theorem ringlghm 18427
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringlghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringlghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2610 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 18375 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . 5 · = (.r𝑅)
61, 5ringcl 18384 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1257 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
8 eqid 2610 . . 3 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
97, 8fmptd 6292 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
10 3anass 1035 . . . . 5 ((𝑋𝐵𝑦𝐵𝑧𝐵) ↔ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵)))
111, 2, 5ringdi 18389 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1210, 11sylan2br 492 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵))) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1312anassrs 678 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
141, 2ringacl 18401 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
15143expb 1258 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1615adantlr 747 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
17 oveq2 6557 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g𝑅)𝑧)))
18 ovex 6577 . . . . 5 (𝑋 · (𝑦(+g𝑅)𝑧)) ∈ V
1917, 8, 18fvmpt 6191 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
2016, 19syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
21 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦))
22 ovex 6577 . . . . . 6 (𝑋 · 𝑦) ∈ V
2321, 8, 22fvmpt 6191 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦))
24 oveq2 6557 . . . . . 6 (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧))
25 ovex 6577 . . . . . 6 (𝑋 · 𝑧) ∈ V
2624, 8, 25fvmpt 6191 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧))
2723, 26oveqan12d 6568 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2827adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2913, 20, 283eqtr4d 2654 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)))
301, 1, 2, 2, 4, 4, 9, 29isghmd 17492 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cmpt 4643  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Grpcgrp 17245   GrpHom cghm 17480  Ringcrg 18370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ghm 17481  df-mgp 18313  df-ring 18372
This theorem is referenced by:  gsummulc2  18430
  Copyright terms: Public domain W3C validator