Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringrghm | Structured version Visualization version GIF version |
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ringlghm.b | ⊢ 𝐵 = (Base‘𝑅) |
ringlghm.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringrghm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlghm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2610 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | ringgrp 18375 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
5 | ringlghm.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
6 | 1, 5 | ringcl 18384 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
7 | 6 | 3expa 1257 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
8 | 7 | an32s 842 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
9 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) | |
10 | 8, 9 | fmptd 6292 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) |
11 | df-3an 1033 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
12 | 1, 2, 5 | ringdir 18390 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
13 | 11, 12 | sylan2br 492 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
14 | 13 | anass1rs 845 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
15 | 1, 2 | ringacl 18401 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
16 | 15 | 3expb 1258 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
17 | 16 | adantlr 747 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
18 | oveq1 6556 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) | |
19 | ovex 6577 | . . . . 5 ⊢ ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ V | |
20 | 18, 9, 19 | fvmpt 6191 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
21 | 17, 20 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
22 | oveq1 6556 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋)) | |
23 | ovex 6577 | . . . . . 6 ⊢ (𝑦 · 𝑋) ∈ V | |
24 | 22, 9, 23 | fvmpt 6191 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋)) |
25 | oveq1 6556 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋)) | |
26 | ovex 6577 | . . . . . 6 ⊢ (𝑧 · 𝑋) ∈ V | |
27 | 25, 9, 26 | fvmpt 6191 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋)) |
28 | 24, 27 | oveqan12d 6568 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
29 | 28 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
30 | 14, 21, 29 | 3eqtr4d 2654 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧))) |
31 | 1, 1, 2, 2, 4, 4, 10, 30 | isghmd 17492 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 +gcplusg 15768 .rcmulr 15769 Grpcgrp 17245 GrpHom cghm 17480 Ringcrg 18370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-ghm 17481 df-mgp 18313 df-ring 18372 |
This theorem is referenced by: gsummulc1 18429 fidomndrnglem 19127 |
Copyright terms: Public domain | W3C validator |