Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankeq1o Structured version   Visualization version   GIF version

Theorem rankeq1o 31448
Description: The only set with rank 1𝑜 is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
Assertion
Ref Expression
rankeq1o ((rank‘𝐴) = 1𝑜𝐴 = {∅})

Proof of Theorem rankeq1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7462 . . . . . . 7 1𝑜 ≠ ∅
2 neeq1 2844 . . . . . . 7 ((rank‘𝐴) = 1𝑜 → ((rank‘𝐴) ≠ ∅ ↔ 1𝑜 ≠ ∅))
31, 2mpbiri 247 . . . . . 6 ((rank‘𝐴) = 1𝑜 → (rank‘𝐴) ≠ ∅)
43neneqd 2787 . . . . 5 ((rank‘𝐴) = 1𝑜 → ¬ (rank‘𝐴) = ∅)
5 fvprc 6097 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
64, 5nsyl2 141 . . . 4 ((rank‘𝐴) = 1𝑜𝐴 ∈ V)
7 fveq2 6103 . . . . . . 7 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
87eqeq1d 2612 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝑥) = 1𝑜 ↔ (rank‘𝐴) = 1𝑜))
9 eqeq1 2614 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 1𝑜𝐴 = 1𝑜))
108, 9imbi12d 333 . . . . 5 (𝑥 = 𝐴 → (((rank‘𝑥) = 1𝑜𝑥 = 1𝑜) ↔ ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜)))
11 neeq1 2844 . . . . . . . 8 ((rank‘𝑥) = 1𝑜 → ((rank‘𝑥) ≠ ∅ ↔ 1𝑜 ≠ ∅))
121, 11mpbiri 247 . . . . . . 7 ((rank‘𝑥) = 1𝑜 → (rank‘𝑥) ≠ ∅)
13 vex 3176 . . . . . . . . 9 𝑥 ∈ V
1413rankeq0 8607 . . . . . . . 8 (𝑥 = ∅ ↔ (rank‘𝑥) = ∅)
1514necon3bii 2834 . . . . . . 7 (𝑥 ≠ ∅ ↔ (rank‘𝑥) ≠ ∅)
1612, 15sylibr 223 . . . . . 6 ((rank‘𝑥) = 1𝑜𝑥 ≠ ∅)
1713rankval 8562 . . . . . . . 8 (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
1817eqeq1i 2615 . . . . . . 7 ((rank‘𝑥) = 1𝑜 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜)
19 ssrab2 3650 . . . . . . . . . . 11 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
20 elirr 8388 . . . . . . . . . . . . . 14 ¬ 1𝑜 ∈ 1𝑜
21 df1o2 7459 . . . . . . . . . . . . . . . 16 1𝑜 = {∅}
22 p0ex 4779 . . . . . . . . . . . . . . . 16 {∅} ∈ V
2321, 22eqeltri 2684 . . . . . . . . . . . . . . 15 1𝑜 ∈ V
24 id 22 . . . . . . . . . . . . . . 15 (V = 1𝑜 → V = 1𝑜)
2523, 24syl5eleq 2694 . . . . . . . . . . . . . 14 (V = 1𝑜 → 1𝑜 ∈ 1𝑜)
2620, 25mto 187 . . . . . . . . . . . . 13 ¬ V = 1𝑜
27 inteq 4413 . . . . . . . . . . . . . . 15 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅)
28 int0 4425 . . . . . . . . . . . . . . 15 ∅ = V
2927, 28syl6eq 2660 . . . . . . . . . . . . . 14 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = V)
3029eqeq1d 2612 . . . . . . . . . . . . 13 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 ↔ V = 1𝑜))
3126, 30mtbiri 316 . . . . . . . . . . . 12 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ¬ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜)
3231necon2ai 2811 . . . . . . . . . . 11 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
33 onint 6887 . . . . . . . . . . 11 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
3419, 32, 33sylancr 694 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
35 eleq1 2676 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}))
3634, 35mpbid 221 . . . . . . . . 9 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → 1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
37 suceq 5707 . . . . . . . . . . . . 13 (𝑦 = 1𝑜 → suc 𝑦 = suc 1𝑜)
3837fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = 1𝑜 → (𝑅1‘suc 𝑦) = (𝑅1‘suc 1𝑜))
39 df-1o 7447 . . . . . . . . . . . . . . . . 17 1𝑜 = suc ∅
4039fveq2i 6106 . . . . . . . . . . . . . . . 16 (𝑅1‘1𝑜) = (𝑅1‘suc ∅)
41 0elon 5695 . . . . . . . . . . . . . . . . 17 ∅ ∈ On
42 r1suc 8516 . . . . . . . . . . . . . . . . 17 (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)
44 r10 8514 . . . . . . . . . . . . . . . . 17 (𝑅1‘∅) = ∅
4544pweqi 4112 . . . . . . . . . . . . . . . 16 𝒫 (𝑅1‘∅) = 𝒫 ∅
4640, 43, 453eqtri 2636 . . . . . . . . . . . . . . 15 (𝑅1‘1𝑜) = 𝒫 ∅
4746pweqi 4112 . . . . . . . . . . . . . 14 𝒫 (𝑅1‘1𝑜) = 𝒫 𝒫 ∅
48 pw0 4283 . . . . . . . . . . . . . . 15 𝒫 ∅ = {∅}
4948pweqi 4112 . . . . . . . . . . . . . 14 𝒫 𝒫 ∅ = 𝒫 {∅}
50 pwpw0 4284 . . . . . . . . . . . . . 14 𝒫 {∅} = {∅, {∅}}
5147, 49, 503eqtrri 2637 . . . . . . . . . . . . 13 {∅, {∅}} = 𝒫 (𝑅1‘1𝑜)
52 1on 7454 . . . . . . . . . . . . . 14 1𝑜 ∈ On
53 r1suc 8516 . . . . . . . . . . . . . 14 (1𝑜 ∈ On → (𝑅1‘suc 1𝑜) = 𝒫 (𝑅1‘1𝑜))
5452, 53ax-mp 5 . . . . . . . . . . . . 13 (𝑅1‘suc 1𝑜) = 𝒫 (𝑅1‘1𝑜)
5551, 54eqtr4i 2635 . . . . . . . . . . . 12 {∅, {∅}} = (𝑅1‘suc 1𝑜)
5638, 55syl6eqr 2662 . . . . . . . . . . 11 (𝑦 = 1𝑜 → (𝑅1‘suc 𝑦) = {∅, {∅}})
5756eleq2d 2673 . . . . . . . . . 10 (𝑦 = 1𝑜 → (𝑥 ∈ (𝑅1‘suc 𝑦) ↔ 𝑥 ∈ {∅, {∅}}))
5857elrab 3331 . . . . . . . . 9 (1𝑜 ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ (1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5936, 58sylib 207 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → (1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
6013elpr 4146 . . . . . . . . . 10 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
61 df-ne 2782 . . . . . . . . . . . 12 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
62 orel1 396 . . . . . . . . . . . 12 𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
6361, 62sylbi 206 . . . . . . . . . . 11 (𝑥 ≠ ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
64 eqeq2 2621 . . . . . . . . . . . . 13 (𝑥 = {∅} → (1𝑜 = 𝑥 ↔ 1𝑜 = {∅}))
6521, 64mpbiri 247 . . . . . . . . . . . 12 (𝑥 = {∅} → 1𝑜 = 𝑥)
6665eqcomd 2616 . . . . . . . . . . 11 (𝑥 = {∅} → 𝑥 = 1𝑜)
6763, 66syl6com 36 . . . . . . . . . 10 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
6860, 67sylbi 206 . . . . . . . . 9 (𝑥 ∈ {∅, {∅}} → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
6968adantl 481 . . . . . . . 8 ((1𝑜 ∈ On ∧ 𝑥 ∈ {∅, {∅}}) → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
7059, 69syl 17 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1𝑜 → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
7118, 70sylbi 206 . . . . . 6 ((rank‘𝑥) = 1𝑜 → (𝑥 ≠ ∅ → 𝑥 = 1𝑜))
7216, 71mpd 15 . . . . 5 ((rank‘𝑥) = 1𝑜𝑥 = 1𝑜)
7310, 72vtoclg 3239 . . . 4 (𝐴 ∈ V → ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜))
746, 73mpcom 37 . . 3 ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜)
75 fveq2 6103 . . . 4 (𝐴 = 1𝑜 → (rank‘𝐴) = (rank‘1𝑜))
76 r111 8521 . . . . . . 7 𝑅1:On–1-1→V
77 f1dm 6018 . . . . . . 7 (𝑅1:On–1-1→V → dom 𝑅1 = On)
7876, 77ax-mp 5 . . . . . 6 dom 𝑅1 = On
7952, 78eleqtrri 2687 . . . . 5 1𝑜 ∈ dom 𝑅1
80 rankonid 8575 . . . . 5 (1𝑜 ∈ dom 𝑅1 ↔ (rank‘1𝑜) = 1𝑜)
8179, 80mpbi 219 . . . 4 (rank‘1𝑜) = 1𝑜
8275, 81syl6eq 2660 . . 3 (𝐴 = 1𝑜 → (rank‘𝐴) = 1𝑜)
8374, 82impbii 198 . 2 ((rank‘𝐴) = 1𝑜𝐴 = 1𝑜)
8421eqeq2i 2622 . 2 (𝐴 = 1𝑜𝐴 = {∅})
8583, 84bitri 263 1 ((rank‘𝐴) = 1𝑜𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  {cpr 4127   cint 4410  dom cdm 5038  Oncon0 5640  suc csuc 5642  1-1wf1 5801  cfv 5804  1𝑜c1o 7440  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-r1 8510  df-rank 8511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator