Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inteq Structured version   Visualization version   GIF version

Theorem inteq 4413
 Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.)
Assertion
Ref Expression
inteq (𝐴 = 𝐵 𝐴 = 𝐵)

Proof of Theorem inteq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3115 . . 3 (𝐴 = 𝐵 → (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐵 𝑥𝑦))
21abbidv 2728 . 2 (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∣ ∀𝑦𝐵 𝑥𝑦})
3 dfint2 4412 . 2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
4 dfint2 4412 . 2 𝐵 = {𝑥 ∣ ∀𝑦𝐵 𝑥𝑦}
52, 3, 43eqtr4g 2669 1 (𝐴 = 𝐵 𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  {cab 2596  ∀wral 2896  ∩ cint 4410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-int 4411 This theorem is referenced by:  inteqi  4414  inteqd  4415  unissint  4436  uniintsn  4449  rint0  4452  intex  4747  intnex  4748  elreldm  5271  elxp5  7004  1stval2  7076  oev2  7490  fundmen  7916  xpsnen  7929  fiint  8122  elfir  8204  inelfi  8207  fiin  8211  cardmin2  8707  isfin2-2  9024  incexclem  14407  mreintcl  16078  ismred2  16086  fiinopn  20531  cmpfii  21022  ptbasfi  21194  fbssint  21452  shintcl  27573  chintcl  27575  inelpisys  29544  rankeq1o  31448  neificl  32719  heibor1lem  32778  elrfi  36275  elrfirn  36276
 Copyright terms: Public domain W3C validator