Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psmeasurelem Structured version   Visualization version   GIF version

Theorem psmeasurelem 39363
Description: 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
psmeasurelem.x (𝜑𝑋𝑉)
psmeasurelem.h (𝜑𝐻:𝑋⟶(0[,]+∞))
psmeasurelem.m 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
psmeasurelem.mf (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
psmeasurelem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
psmeasurelem.dj (𝜑Disj 𝑦𝑌 𝑦)
Assertion
Ref Expression
psmeasurelem (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Distinct variable groups:   𝑥,𝐻,𝑦   𝑦,𝑀   𝑥,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem psmeasurelem
StepHypRef Expression
1 psmeasurelem.y . . . 4 (𝜑𝑌 ⊆ 𝒫 𝑋)
2 psmeasurelem.x . . . . 5 (𝜑𝑋𝑉)
3 pwexg 4776 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
42, 3syl 17 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
5 ssexg 4732 . . . 4 ((𝑌 ⊆ 𝒫 𝑋 ∧ 𝒫 𝑋 ∈ V) → 𝑌 ∈ V)
61, 4, 5syl2anc 691 . . 3 (𝜑𝑌 ∈ V)
7 simpr 476 . . 3 ((𝜑𝑦𝑌) → 𝑦𝑌)
8 uniiun 4509 . . 3 𝑌 = 𝑦𝑌 𝑦
9 psmeasurelem.h . . . 4 (𝜑𝐻:𝑋⟶(0[,]+∞))
10 elpwg 4116 . . . . . . . 8 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
116, 10syl 17 . . . . . . 7 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
121, 11mpbird 246 . . . . . 6 (𝜑𝑌 ∈ 𝒫 𝒫 𝑋)
13 pwpwuni 38250 . . . . . . 7 (𝑌 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
146, 13syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ 𝒫 𝒫 𝑋 𝑌 ∈ 𝒫 𝑋))
1512, 14mpbid 221 . . . . 5 (𝜑 𝑌 ∈ 𝒫 𝑋)
1615elpwid 4118 . . . 4 (𝜑 𝑌𝑋)
179, 16fssresd 5984 . . 3 (𝜑 → (𝐻 𝑌): 𝑌⟶(0[,]+∞))
18 psmeasurelem.dj . . 3 (𝜑Disj 𝑦𝑌 𝑦)
196, 7, 8, 17, 18sge0iun 39312 . 2 (𝜑 → (Σ^‘(𝐻 𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
20 psmeasurelem.m . . . 4 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥)))
2120a1i 11 . . 3 (𝜑𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥))))
22 reseq2 5312 . . . . 5 (𝑥 = 𝑌 → (𝐻𝑥) = (𝐻 𝑌))
2322fveq2d 6107 . . . 4 (𝑥 = 𝑌 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 𝑌)))
2423adantl 481 . . 3 ((𝜑𝑥 = 𝑌) → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻 𝑌)))
25 fvex 6113 . . . 4 ^‘(𝐻 𝑌)) ∈ V
2625a1i 11 . . 3 (𝜑 → (Σ^‘(𝐻 𝑌)) ∈ V)
2721, 24, 15, 26fvmptd 6197 . 2 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝐻 𝑌)))
28 psmeasurelem.mf . . . . . 6 (𝜑𝑀:𝒫 𝑋⟶(0[,]+∞))
2928, 1fssresd 5984 . . . . 5 (𝜑 → (𝑀𝑌):𝑌⟶(0[,]+∞))
3029feqmptd 6159 . . . 4 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)))
31 fvres 6117 . . . . . . 7 (𝑦𝑌 → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
327, 31syl 17 . . . . . 6 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (𝑀𝑦))
3320a1i 11 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻𝑥))))
34 reseq2 5312 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
3534fveq2d 6107 . . . . . . . 8 (𝑥 = 𝑦 → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻𝑦)))
3635adantl 481 . . . . . . 7 (((𝜑𝑦𝑌) ∧ 𝑥 = 𝑦) → (Σ^‘(𝐻𝑥)) = (Σ^‘(𝐻𝑦)))
371sselda 3568 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
38 fvex 6113 . . . . . . . 8 ^‘(𝐻𝑦)) ∈ V
3938a1i 11 . . . . . . 7 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) ∈ V)
4033, 36, 37, 39fvmptd 6197 . . . . . 6 ((𝜑𝑦𝑌) → (𝑀𝑦) = (Σ^‘(𝐻𝑦)))
41 elssuni 4403 . . . . . . . . . 10 (𝑦𝑌𝑦 𝑌)
42 resabs1 5347 . . . . . . . . . 10 (𝑦 𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
4341, 42syl 17 . . . . . . . . 9 (𝑦𝑌 → ((𝐻 𝑌) ↾ 𝑦) = (𝐻𝑦))
4443eqcomd 2616 . . . . . . . 8 (𝑦𝑌 → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
4544adantl 481 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐻𝑦) = ((𝐻 𝑌) ↾ 𝑦))
4645fveq2d 6107 . . . . . 6 ((𝜑𝑦𝑌) → (Σ^‘(𝐻𝑦)) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4732, 40, 463eqtrd 2648 . . . . 5 ((𝜑𝑦𝑌) → ((𝑀𝑌)‘𝑦) = (Σ^‘((𝐻 𝑌) ↾ 𝑦)))
4847mpteq2dva 4672 . . . 4 (𝜑 → (𝑦𝑌 ↦ ((𝑀𝑌)‘𝑦)) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
4930, 48eqtrd 2644 . . 3 (𝜑 → (𝑀𝑌) = (𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦))))
5049fveq2d 6107 . 2 (𝜑 → (Σ^‘(𝑀𝑌)) = (Σ^‘(𝑦𝑌 ↦ (Σ^‘((𝐻 𝑌) ↾ 𝑦)))))
5119, 27, 503eqtr4d 2654 1 (𝜑 → (𝑀 𝑌) = (Σ^‘(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372  Disj wdisj 4553  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  [,]cicc 12049  Σ^csumge0 39255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256
This theorem is referenced by:  psmeasure  39364
  Copyright terms: Public domain W3C validator