Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem2 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem2 40035
 Description: Lemma 2 for prmdvdsfmtnof1 40037. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
prmdvdsfmtnof1lem2 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))

Proof of Theorem prmdvdsfmtnof1lem2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmtnorn 39984 . 2 (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
2 fmtnorn 39984 . 2 (𝐺 ∈ ran FermatNo ↔ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺)
3 2a1 28 . . . . . . . 8 (𝐹 = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
432a1d 26 . . . . . . 7 (𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
5 fmtnonn 39981 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
65ad2antrl 760 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑛) ∈ ℕ)
76adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑛) ∈ ℕ)
8 eleq1 2676 . . . . . . . . . . 11 ((FermatNo‘𝑛) = 𝐹 → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
98ad2antll 761 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
107, 9mpbid 221 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐹 ∈ ℕ)
11 fmtnonn 39981 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) ∈ ℕ)
1211ad2antll 761 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑚) ∈ ℕ)
1312adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑚) ∈ ℕ)
14 eleq1 2676 . . . . . . . . . . 11 ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1514ad2antrl 760 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1613, 15mpbid 221 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐺 ∈ ℕ)
17 simpll 786 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛 ∈ ℕ0)
18 simplr 788 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑚 ∈ ℕ0)
19 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (FermatNo‘𝑛) = (FermatNo‘𝑚))
2019con3i 149 . . . . . . . . . . . . . . . . 17 (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ¬ 𝑛 = 𝑚)
2120adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ¬ 𝑛 = 𝑚)
2221neqned 2789 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛𝑚)
23 goldbachth 39997 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0𝑛𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2417, 18, 22, 23syl3anc 1318 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2524ex 449 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1))
26 eqeq12 2623 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ 𝐹 = 𝐺))
2726notbid 307 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ¬ 𝐹 = 𝐺))
28 oveq12 6558 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = (𝐹 gcd 𝐺))
2928eqeq1d 2612 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1 ↔ (𝐹 gcd 𝐺) = 1))
3027, 29imbi12d 333 . . . . . . . . . . . . . 14 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3130ancoms 468 . . . . . . . . . . . . 13 (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3225, 31syl5ibcom 234 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3332com23 84 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ 𝐹 = 𝐺 → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1)))
3433impcom 445 . . . . . . . . . 10 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1))
3534imp 444 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (𝐹 gcd 𝐺) = 1)
36 prmnn 15226 . . . . . . . . . . . 12 (𝐼 ∈ ℙ → 𝐼 ∈ ℕ)
37 coprmdvds1 15203 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
3837imp 444 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
3936, 38syl3anr1 1370 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
40 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝐼 = 1 → (𝐼 ∈ ℙ ↔ 1 ∈ ℙ))
41 1nprm 15230 . . . . . . . . . . . . . . . . 17 ¬ 1 ∈ ℙ
4241pm2.21i 115 . . . . . . . . . . . . . . . 16 (1 ∈ ℙ → 𝐹 = 𝐺)
4340, 42syl6bi 242 . . . . . . . . . . . . . . 15 (𝐼 = 1 → (𝐼 ∈ ℙ → 𝐹 = 𝐺))
4443com12 32 . . . . . . . . . . . . . 14 (𝐼 ∈ ℙ → (𝐼 = 1 → 𝐹 = 𝐺))
4544a1d 25 . . . . . . . . . . . . 13 (𝐼 ∈ ℙ → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
46453ad2ant1 1075 . . . . . . . . . . . 12 ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
4746impcom 445 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → (𝐼 = 1 → 𝐹 = 𝐺))
4839, 47mpd 15 . . . . . . . . . 10 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐹 = 𝐺)
4948ex 449 . . . . . . . . 9 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5010, 16, 35, 49syl3anc 1318 . . . . . . . 8 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5150exp43 638 . . . . . . 7 𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
524, 51pm2.61i 175 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5352rexlimdva 3013 . . . . 5 (𝑛 ∈ ℕ0 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5453com23 84 . . . 4 (𝑛 ∈ ℕ0 → ((FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5554rexlimiv 3009 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
5655imp 444 . 2 ((∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 ∧ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
571, 2, 56syl2anb 495 1 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   class class class wbr 4583  ran crn 5039  ‘cfv 5804  (class class class)co 6549  1c1 9816  ℕcn 10897  ℕ0cn0 11169   ∥ cdvds 14821   gcd cgcd 15054  ℙcprime 15223  FermatNocfmtno 39977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055  df-prm 15224  df-fmtno 39978 This theorem is referenced by:  prmdvdsfmtnof1  40037
 Copyright terms: Public domain W3C validator