MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgcl Structured version   Visualization version   GIF version

Theorem prdsplusgcl 17144
Description: Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsplusgcl.f (𝜑𝐹𝐵)
prdsplusgcl.g (𝜑𝐺𝐵)
Assertion
Ref Expression
prdsplusgcl (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)

Proof of Theorem prdsplusgcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsplusgcl.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsplusgcl.b . . 3 𝐵 = (Base‘𝑌)
3 prdsplusgcl.s . . 3 (𝜑𝑆𝑉)
4 prdsplusgcl.i . . 3 (𝜑𝐼𝑊)
5 prdsplusgcl.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
6 ffn 5958 . . . 4 (𝑅:𝐼⟶Mnd → 𝑅 Fn 𝐼)
75, 6syl 17 . . 3 (𝜑𝑅 Fn 𝐼)
8 prdsplusgcl.f . . 3 (𝜑𝐹𝐵)
9 prdsplusgcl.g . . 3 (𝜑𝐺𝐵)
10 prdsplusgcl.p . . 3 + = (+g𝑌)
111, 2, 3, 4, 7, 8, 9, 10prdsplusgval 15956 . 2 (𝜑 → (𝐹 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))))
125ffvelrnda 6267 . . . . 5 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ Mnd)
133adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑆𝑉)
144adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑊)
157adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 Fn 𝐼)
168adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐹𝐵)
17 simpr 476 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥𝐼)
181, 2, 13, 14, 15, 16, 17prdsbasprj 15955 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (Base‘(𝑅𝑥)))
199adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐺𝐵)
201, 2, 13, 14, 15, 19, 17prdsbasprj 15955 . . . . 5 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ (Base‘(𝑅𝑥)))
21 eqid 2610 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
22 eqid 2610 . . . . . 6 (+g‘(𝑅𝑥)) = (+g‘(𝑅𝑥))
2321, 22mndcl 17124 . . . . 5 (((𝑅𝑥) ∈ Mnd ∧ (𝐹𝑥) ∈ (Base‘(𝑅𝑥)) ∧ (𝐺𝑥) ∈ (Base‘(𝑅𝑥))) → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
2412, 18, 20, 23syl3anc 1318 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
2524ralrimiva 2949 . . 3 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥)))
261, 2, 3, 4, 7prdsbasmpt 15953 . . 3 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) ∈ 𝐵 ↔ ∀𝑥𝐼 ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥)) ∈ (Base‘(𝑅𝑥))))
2725, 26mpbird 246 . 2 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘(𝑅𝑥))(𝐺𝑥))) ∈ 𝐵)
2811, 27eqeltrd 2688 1 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cmpt 4643   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Xscprds 15929  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by:  prdsmndd  17146  prdsringd  18435  dsmmacl  19904
  Copyright terms: Public domain W3C validator