Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrodpm | Structured version Visualization version GIF version |
Description: A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmodpmf1o.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmodpmf1o.p | ⊢ 𝑃 = (Base‘𝑆) |
pmtrodpm.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrodpm | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐷 ∈ Fin) | |
2 | pmtrodpm.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
3 | evpmodpmf1o.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
4 | evpmodpmf1o.p | . . . . 5 ⊢ 𝑃 = (Base‘𝑆) | |
5 | 2, 3, 4 | symgtrf 17712 | . . . 4 ⊢ 𝑇 ⊆ 𝑃 |
6 | 5 | sseli 3564 | . . 3 ⊢ (𝐹 ∈ 𝑇 → 𝐹 ∈ 𝑃) |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑃) |
8 | eqid 2610 | . . . 4 ⊢ (pmSgn‘𝐷) = (pmSgn‘𝐷) | |
9 | 3, 2, 8 | psgnpmtr 17753 | . . 3 ⊢ (𝐹 ∈ 𝑇 → ((pmSgn‘𝐷)‘𝐹) = -1) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → ((pmSgn‘𝐷)‘𝐹) = -1) |
11 | 3, 4, 8 | psgnodpmr 19755 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
12 | 1, 7, 10, 11 | syl3anc 1318 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∖ cdif 3537 ran crn 5039 ‘cfv 5804 Fincfn 7841 1c1 9816 -cneg 10146 Basecbs 15695 SymGrpcsymg 17620 pmTrspcpmtr 17684 pmSgncpsgn 17732 pmEvencevpm 17733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-xor 1457 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-tpos 7239 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-xnn0 11241 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-hash 12980 df-word 13154 df-lsw 13155 df-concat 13156 df-s1 13157 df-substr 13158 df-splice 13159 df-reverse 13160 df-s2 13444 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-0g 15925 df-gsum 15926 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-subg 17414 df-ghm 17481 df-gim 17524 df-oppg 17599 df-symg 17621 df-pmtr 17685 df-psgn 17734 df-evpm 17735 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-oppr 18446 df-dvdsr 18464 df-unit 18465 df-invr 18495 df-dvr 18506 df-drng 18572 df-cnfld 19568 |
This theorem is referenced by: mdetralt 20233 mdetunilem7 20243 |
Copyright terms: Public domain | W3C validator |