Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrdifellem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for pmtrdifel 17723. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifel.0 | ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) |
Ref | Expression |
---|---|
pmtrdifellem3 | ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | . . . . . . 7 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
2 | pmtrdifel.r | . . . . . . 7 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
3 | pmtrdifel.0 | . . . . . . 7 ⊢ 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I )) | |
4 | 1, 2, 3 | pmtrdifellem2 17720 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I )) |
6 | 5 | eleq2d 2673 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑥 ∈ dom (𝑆 ∖ I ) ↔ 𝑥 ∈ dom (𝑄 ∖ I ))) |
7 | 4 | difeq1d 3689 | . . . . . 6 ⊢ (𝑄 ∈ 𝑇 → (dom (𝑆 ∖ I ) ∖ {𝑥}) = (dom (𝑄 ∖ I ) ∖ {𝑥})) |
8 | 7 | unieqd 4382 | . . . . 5 ⊢ (𝑄 ∈ 𝑇 → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}) = ∪ (dom (𝑄 ∖ I ) ∖ {𝑥})) |
10 | 6, 9 | ifbieq1d 4059 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
11 | 1, 2, 3 | pmtrdifellem1 17719 | . . . 4 ⊢ (𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅) |
12 | eldifi 3694 | . . . 4 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) → 𝑥 ∈ 𝑁) | |
13 | eqid 2610 | . . . . 5 ⊢ (pmTrsp‘𝑁) = (pmTrsp‘𝑁) | |
14 | eqid 2610 | . . . . 5 ⊢ dom (𝑆 ∖ I ) = dom (𝑆 ∖ I ) | |
15 | 13, 2, 14 | pmtrffv 17702 | . . . 4 ⊢ ((𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
16 | 11, 12, 15 | syl2an 493 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑆‘𝑥) = if(𝑥 ∈ dom (𝑆 ∖ I ), ∪ (dom (𝑆 ∖ I ) ∖ {𝑥}), 𝑥)) |
17 | eqid 2610 | . . . 4 ⊢ (pmTrsp‘(𝑁 ∖ {𝐾})) = (pmTrsp‘(𝑁 ∖ {𝐾})) | |
18 | eqid 2610 | . . . 4 ⊢ dom (𝑄 ∖ I ) = dom (𝑄 ∖ I ) | |
19 | 17, 1, 18 | pmtrffv 17702 | . . 3 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = if(𝑥 ∈ dom (𝑄 ∖ I ), ∪ (dom (𝑄 ∖ I ) ∖ {𝑥}), 𝑥)) |
20 | 10, 16, 19 | 3eqtr4rd 2655 | . 2 ⊢ ((𝑄 ∈ 𝑇 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑄‘𝑥) = (𝑆‘𝑥)) |
21 | 20 | ralrimiva 2949 | 1 ⊢ (𝑄 ∈ 𝑇 → ∀𝑥 ∈ (𝑁 ∖ {𝐾})(𝑄‘𝑥) = (𝑆‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∖ cdif 3537 ifcif 4036 {csn 4125 ∪ cuni 4372 I cid 4948 dom cdm 5038 ran crn 5039 ‘cfv 5804 pmTrspcpmtr 17684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-1o 7447 df-2o 7448 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pmtr 17685 |
This theorem is referenced by: pmtrdifel 17723 pmtrdifwrdellem3 17726 |
Copyright terms: Public domain | W3C validator |