Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem4 Structured version   Visualization version   GIF version

Theorem pmtrdifellem4 17722
 Description: Lemma 4 for pmtrdifel 17723. (Contributed by AV, 28-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifel.0 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
Assertion
Ref Expression
pmtrdifellem4 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)

Proof of Theorem pmtrdifellem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrdifel.t . . . 4 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
2 pmtrdifel.r . . . 4 𝑅 = ran (pmTrsp‘𝑁)
3 pmtrdifel.0 . . . 4 𝑆 = ((pmTrsp‘𝑁)‘dom (𝑄 ∖ I ))
41, 2, 3pmtrdifellem1 17719 . . 3 (𝑄𝑇𝑆𝑅)
5 eqid 2610 . . . 4 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
6 eqid 2610 . . . 4 dom (𝑆 ∖ I ) = dom (𝑆 ∖ I )
75, 2, 6pmtrffv 17702 . . 3 ((𝑆𝑅𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
84, 7sylan 487 . 2 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾))
9 eqid 2610 . . . . . . . 8 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
10 eqid 2610 . . . . . . . 8 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
111, 9, 10symgtrf 17712 . . . . . . 7 𝑇 ⊆ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
1211sseli 3564 . . . . . 6 (𝑄𝑇𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
139, 10symgbasf 17627 . . . . . 6 (𝑄 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) → 𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
14 ffn 5958 . . . . . . 7 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → 𝑄 Fn (𝑁 ∖ {𝐾}))
15 fndifnfp 6347 . . . . . . 7 (𝑄 Fn (𝑁 ∖ {𝐾}) → dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
16 ssrab2 3650 . . . . . . . . . 10 {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾})
17 ssel2 3563 . . . . . . . . . . 11 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → 𝐾 ∈ (𝑁 ∖ {𝐾}))
18 eldif 3550 . . . . . . . . . . . 12 (𝐾 ∈ (𝑁 ∖ {𝐾}) ↔ (𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}))
19 elsng 4139 . . . . . . . . . . . . . . 15 (𝐾𝑁 → (𝐾 ∈ {𝐾} ↔ 𝐾 = 𝐾))
2019notbid 307 . . . . . . . . . . . . . 14 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} ↔ ¬ 𝐾 = 𝐾))
21 eqid 2610 . . . . . . . . . . . . . . 15 𝐾 = 𝐾
2221pm2.24i 145 . . . . . . . . . . . . . 14 𝐾 = 𝐾 → ¬ 𝐾𝑁)
2320, 22syl6bi 242 . . . . . . . . . . . . 13 (𝐾𝑁 → (¬ 𝐾 ∈ {𝐾} → ¬ 𝐾𝑁))
2423imp 444 . . . . . . . . . . . 12 ((𝐾𝑁 ∧ ¬ 𝐾 ∈ {𝐾}) → ¬ 𝐾𝑁)
2518, 24sylbi 206 . . . . . . . . . . 11 (𝐾 ∈ (𝑁 ∖ {𝐾}) → ¬ 𝐾𝑁)
2617, 25syl 17 . . . . . . . . . 10 (({𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} ⊆ (𝑁 ∖ {𝐾}) ∧ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}) → ¬ 𝐾𝑁)
2716, 26mpan 702 . . . . . . . . 9 (𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → ¬ 𝐾𝑁)
2827con2i 133 . . . . . . . 8 (𝐾𝑁 → ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥})
29 eleq2 2677 . . . . . . . . 9 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾 ∈ dom (𝑄 ∖ I ) ↔ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3029notbid 307 . . . . . . . 8 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (¬ 𝐾 ∈ dom (𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥}))
3128, 30syl5ibr 235 . . . . . . 7 (dom (𝑄 ∖ I ) = {𝑥 ∈ (𝑁 ∖ {𝐾}) ∣ (𝑄𝑥) ≠ 𝑥} → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3214, 15, 313syl 18 . . . . . 6 (𝑄:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3312, 13, 323syl 18 . . . . 5 (𝑄𝑇 → (𝐾𝑁 → ¬ 𝐾 ∈ dom (𝑄 ∖ I )))
3433imp 444 . . . 4 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑄 ∖ I ))
351, 2, 3pmtrdifellem2 17720 . . . . . 6 (𝑄𝑇 → dom (𝑆 ∖ I ) = dom (𝑄 ∖ I ))
3635eleq2d 2673 . . . . 5 (𝑄𝑇 → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3736adantr 480 . . . 4 ((𝑄𝑇𝐾𝑁) → (𝐾 ∈ dom (𝑆 ∖ I ) ↔ 𝐾 ∈ dom (𝑄 ∖ I )))
3834, 37mtbird 314 . . 3 ((𝑄𝑇𝐾𝑁) → ¬ 𝐾 ∈ dom (𝑆 ∖ I ))
3938iffalsed 4047 . 2 ((𝑄𝑇𝐾𝑁) → if(𝐾 ∈ dom (𝑆 ∖ I ), (dom (𝑆 ∖ I ) ∖ {𝐾}), 𝐾) = 𝐾)
408, 39eqtrd 2644 1 ((𝑄𝑇𝐾𝑁) → (𝑆𝐾) = 𝐾)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  {csn 4125  ∪ cuni 4372   I cid 4948  dom cdm 5038  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  Basecbs 15695  SymGrpcsymg 17620  pmTrspcpmtr 17684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-tset 15787  df-symg 17621  df-pmtr 17685 This theorem is referenced by:  pmtrdifwrdel2lem1  17727
 Copyright terms: Public domain W3C validator