MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Visualization version   GIF version

Theorem pm54.43 8686
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 8654), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1𝑜} which is the same as 𝐴 ≈ 1𝑜 by pm54.43lem 8685. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem pm110.643 8859 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2𝑜))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 7431 . . . . . . . 8 1𝑜 ∈ On
21elexi 3185 . . . . . . 7 1𝑜 ∈ V
32ensn1 7883 . . . . . 6 {1𝑜} ≈ 1𝑜
43ensymi 7869 . . . . 5 1𝑜 ≈ {1𝑜}
5 entr 7871 . . . . 5 ((𝐵 ≈ 1𝑜 ∧ 1𝑜 ≈ {1𝑜}) → 𝐵 ≈ {1𝑜})
64, 5mpan2 702 . . . 4 (𝐵 ≈ 1𝑜𝐵 ≈ {1𝑜})
71onirri 5737 . . . . . . 7 ¬ 1𝑜 ∈ 1𝑜
8 disjsn 4191 . . . . . . 7 ((1𝑜 ∩ {1𝑜}) = ∅ ↔ ¬ 1𝑜 ∈ 1𝑜)
97, 8mpbir 219 . . . . . 6 (1𝑜 ∩ {1𝑜}) = ∅
10 unen 7902 . . . . . 6 (((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) ∧ ((𝐴𝐵) = ∅ ∧ (1𝑜 ∩ {1𝑜}) = ∅)) → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
119, 10mpanr2 715 . . . . 5 (((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
1211ex 448 . . . 4 ((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜})))
136, 12sylan2 489 . . 3 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜})))
14 df-2o 7425 . . . . 5 2𝑜 = suc 1𝑜
15 df-suc 5632 . . . . 5 suc 1𝑜 = (1𝑜 ∪ {1𝑜})
1614, 15eqtri 2631 . . . 4 2𝑜 = (1𝑜 ∪ {1𝑜})
1716breq2i 4585 . . 3 ((𝐴𝐵) ≈ 2𝑜 ↔ (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
1813, 17syl6ibr 240 . 2 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2𝑜))
19 en1 7886 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 7886 . . 3 (𝐵 ≈ 1𝑜 ↔ ∃𝑦 𝐵 = {𝑦})
21 unidm 3717 . . . . . . . . . . . . . 14 ({𝑥} ∪ {𝑥}) = {𝑥}
22 sneq 4134 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2322uneq2d 3728 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
2421, 23syl5reqr 2658 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
25 vex 3175 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2625ensn1 7883 . . . . . . . . . . . . . 14 {𝑥} ≈ 1𝑜
27 1sdom2 8021 . . . . . . . . . . . . . 14 1𝑜 ≺ 2𝑜
28 ensdomtr 7958 . . . . . . . . . . . . . 14 (({𝑥} ≈ 1𝑜 ∧ 1𝑜 ≺ 2𝑜) → {𝑥} ≺ 2𝑜)
2926, 27, 28mp2an 703 . . . . . . . . . . . . 13 {𝑥} ≺ 2𝑜
3024, 29syl6eqbr 4616 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≺ 2𝑜)
31 sdomnen 7847 . . . . . . . . . . . 12 (({𝑥} ∪ {𝑦}) ≺ 2𝑜 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2𝑜)
3230, 31syl 17 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2𝑜)
3332necon2ai 2810 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2𝑜𝑥𝑦)
34 disjsn2 4192 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3533, 34syl 17 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2𝑜 → ({𝑥} ∩ {𝑦}) = ∅)
3635a1i 11 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2𝑜 → ({𝑥} ∩ {𝑦}) = ∅))
37 uneq12 3723 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3837breq1d 4587 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 ↔ ({𝑥} ∪ {𝑦}) ≈ 2𝑜))
39 ineq12 3770 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4039eqeq1d 2611 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4136, 38, 403imtr4d 281 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4241ex 448 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4342exlimdv 1847 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4443exlimiv 1844 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4544imp 443 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4619, 20, 45syl2anb 494 . 2 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4718, 46impbid 200 1 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  cun 3537  cin 3538  c0 3873  {csn 4124   class class class wbr 4577  Oncon0 5626  suc csuc 5628  1𝑜c1o 7417  2𝑜c2o 7418  cen 7815  csdm 7817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-om 6935  df-1o 7424  df-2o 7425  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821
This theorem is referenced by:  pr2nelem  8687  pm110.643  8859  isprm2lem  15178
  Copyright terms: Public domain W3C validator