MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2nelem Structured version   Visualization version   GIF version

Theorem pr2nelem 8710
Description: Lemma for pr2ne 8711. (Contributed by FL, 17-Aug-2008.)
Assertion
Ref Expression
pr2nelem ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)

Proof of Theorem pr2nelem
StepHypRef Expression
1 disjsn2 4193 . . 3 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
2 ensn1g 7907 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1𝑜)
3 ensn1g 7907 . . . . 5 (𝐵𝐷 → {𝐵} ≈ 1𝑜)
4 pm54.43 8709 . . . . . . 7 (({𝐴} ≈ 1𝑜 ∧ {𝐵} ≈ 1𝑜) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2𝑜))
5 df-pr 4128 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65breq1i 4590 . . . . . . 7 ({𝐴, 𝐵} ≈ 2𝑜 ↔ ({𝐴} ∪ {𝐵}) ≈ 2𝑜)
74, 6syl6bbr 277 . . . . . 6 (({𝐴} ≈ 1𝑜 ∧ {𝐵} ≈ 1𝑜) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2𝑜))
87biimpd 218 . . . . 5 (({𝐴} ≈ 1𝑜 ∧ {𝐵} ≈ 1𝑜) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2𝑜))
92, 3, 8syl2an 493 . . . 4 ((𝐴𝐶𝐵𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2𝑜))
109ex 449 . . 3 (𝐴𝐶 → (𝐵𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2𝑜)))
111, 10syl7 72 . 2 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2𝑜)))
12113imp 1249 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cun 3538  cin 3539  c0 3874  {csn 4125  {cpr 4127   class class class wbr 4583  1𝑜c1o 7440  2𝑜c2o 7441  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  pr2ne  8711  en2eqpr  8713  en2eleq  8714  pr2pwpr  13116  pmtrprfv  17696  pmtrprfv3  17697  symggen  17713  pmtr3ncomlem1  17716  pmtr3ncom  17718  mdetralt  20233  en2top  20600  hmphindis  21410  pmtrto1cl  29180
  Copyright terms: Public domain W3C validator