Step | Hyp | Ref
| Expression |
1 | | neeq1 2844 |
. . . 4
⊢ (𝑝 = 𝑃 → (𝑝 ≠ 1 ↔ 𝑃 ≠ 1)) |
2 | | breq2 4587 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑛 ∥ 𝑝 ↔ 𝑛 ∥ 𝑃)) |
3 | 2 | rabbidv 3164 |
. . . . . 6
⊢ (𝑝 = 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃}) |
4 | 3 | breq1d 4593 |
. . . . 5
⊢ (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈
2𝑜)) |
5 | | preq2 4213 |
. . . . . 6
⊢ (𝑝 = 𝑃 → {1, 𝑝} = {1, 𝑃}) |
6 | 3, 5 | eqeq12d 2625 |
. . . . 5
⊢ (𝑝 = 𝑃 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝} ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) |
7 | 4, 6 | bibi12d 334 |
. . . 4
⊢ (𝑝 = 𝑃 → (({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝}) ↔ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2𝑜 ↔
{𝑛 ∈ ℕ ∣
𝑛 ∥ 𝑃} = {1, 𝑃}))) |
8 | 1, 7 | imbi12d 333 |
. . 3
⊢ (𝑝 = 𝑃 → ((𝑝 ≠ 1 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝})) ↔ (𝑃 ≠ 1 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2𝑜 ↔
{𝑛 ∈ ℕ ∣
𝑛 ∥ 𝑃} = {1, 𝑃})))) |
9 | | 1idssfct 15231 |
. . . . . . . 8
⊢ (𝑝 ∈ ℕ → {1, 𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
10 | | disjsn 4192 |
. . . . . . . . . . . 12
⊢ (({1}
∩ {𝑝}) = ∅ ↔
¬ 𝑝 ∈
{1}) |
11 | | 1ex 9914 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
12 | 11 | ensn1 7906 |
. . . . . . . . . . . . 13
⊢ {1}
≈ 1𝑜 |
13 | | vex 3176 |
. . . . . . . . . . . . . 14
⊢ 𝑝 ∈ V |
14 | 13 | ensn1 7906 |
. . . . . . . . . . . . 13
⊢ {𝑝} ≈
1𝑜 |
15 | | pm54.43 8709 |
. . . . . . . . . . . . 13
⊢ (({1}
≈ 1𝑜 ∧ {𝑝} ≈ 1𝑜) → (({1}
∩ {𝑝}) = ∅ ↔
({1} ∪ {𝑝}) ≈
2𝑜)) |
16 | 12, 14, 15 | mp2an 704 |
. . . . . . . . . . . 12
⊢ (({1}
∩ {𝑝}) = ∅ ↔
({1} ∪ {𝑝}) ≈
2𝑜) |
17 | 10, 16 | bitr3i 265 |
. . . . . . . . . . 11
⊢ (¬
𝑝 ∈ {1} ↔ ({1}
∪ {𝑝}) ≈
2𝑜) |
18 | | velsn 4141 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ {1} ↔ 𝑝 = 1) |
19 | 17, 18 | xchnxbi 321 |
. . . . . . . . . 10
⊢ (¬
𝑝 = 1 ↔ ({1} ∪
{𝑝}) ≈
2𝑜) |
20 | | df-ne 2782 |
. . . . . . . . . 10
⊢ (𝑝 ≠ 1 ↔ ¬ 𝑝 = 1) |
21 | | df-pr 4128 |
. . . . . . . . . . 11
⊢ {1, 𝑝} = ({1} ∪ {𝑝}) |
22 | 21 | breq1i 4590 |
. . . . . . . . . 10
⊢ ({1,
𝑝} ≈
2𝑜 ↔ ({1} ∪ {𝑝}) ≈
2𝑜) |
23 | 19, 20, 22 | 3bitr4i 291 |
. . . . . . . . 9
⊢ (𝑝 ≠ 1 ↔ {1, 𝑝} ≈
2𝑜) |
24 | | ensym 7891 |
. . . . . . . . . 10
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 →
2𝑜 ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
25 | | entr 7894 |
. . . . . . . . . 10
⊢ (({1,
𝑝} ≈
2𝑜 ∧ 2𝑜 ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
26 | 24, 25 | sylan2 490 |
. . . . . . . . 9
⊢ (({1,
𝑝} ≈
2𝑜 ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜) → {1,
𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
27 | 23, 26 | sylanb 488 |
. . . . . . . 8
⊢ ((𝑝 ≠ 1 ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜) → {1,
𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
28 | | prfi 8120 |
. . . . . . . . . . 11
⊢ {1, 𝑝} ∈ Fin |
29 | | ensym 7891 |
. . . . . . . . . . 11
⊢ ({1,
𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ {1, 𝑝}) |
30 | | enfii 8062 |
. . . . . . . . . . 11
⊢ (({1,
𝑝} ∈ Fin ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ {1, 𝑝}) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin) |
31 | 28, 29, 30 | sylancr 694 |
. . . . . . . . . 10
⊢ ({1,
𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin) |
32 | 31 | adantl 481 |
. . . . . . . . 9
⊢ (({1,
𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin) |
33 | | dfpss2 3654 |
. . . . . . . . . . . 12
⊢ ({1,
𝑝} ⊊ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ↔ ({1, 𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ ¬ {1, 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝})) |
34 | | pssinf 8055 |
. . . . . . . . . . . 12
⊢ (({1,
𝑝} ⊊ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin) |
35 | 33, 34 | sylanbr 489 |
. . . . . . . . . . 11
⊢ ((({1,
𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ ¬ {1, 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) ∧ {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin) |
36 | 35 | an32s 842 |
. . . . . . . . . 10
⊢ ((({1,
𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) ∧ ¬ {1, 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin) |
37 | 36 | ex 449 |
. . . . . . . . 9
⊢ (({1,
𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → (¬ {1, 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} → ¬ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∈ Fin)) |
38 | 32, 37 | mt4d 151 |
. . . . . . . 8
⊢ (({1,
𝑝} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ∧ {1, 𝑝} ≈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) → {1, 𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
39 | 9, 27, 38 | syl2an 493 |
. . . . . . 7
⊢ ((𝑝 ∈ ℕ ∧ (𝑝 ≠ 1 ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜)) → {1,
𝑝} = {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝}) |
40 | 39 | eqcomd 2616 |
. . . . . 6
⊢ ((𝑝 ∈ ℕ ∧ (𝑝 ≠ 1 ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜)) →
{𝑛 ∈ ℕ ∣
𝑛 ∥ 𝑝} = {1, 𝑝}) |
41 | 40 | expr 641 |
. . . . 5
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝})) |
42 | | breq1 4586 |
. . . . . . . 8
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝} → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ {1,
𝑝} ≈
2𝑜)) |
43 | 42, 23 | syl6bbr 277 |
. . . . . . 7
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝} → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ 𝑝 ≠ 1)) |
44 | 43 | biimprcd 239 |
. . . . . 6
⊢ (𝑝 ≠ 1 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝} → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈
2𝑜)) |
45 | 44 | adantl 481 |
. . . . 5
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝} → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈
2𝑜)) |
46 | 41, 45 | impbid 201 |
. . . 4
⊢ ((𝑝 ∈ ℕ ∧ 𝑝 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝})) |
47 | 46 | ex 449 |
. . 3
⊢ (𝑝 ∈ ℕ → (𝑝 ≠ 1 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} = {1, 𝑝}))) |
48 | 8, 47 | vtoclga 3245 |
. 2
⊢ (𝑃 ∈ ℕ → (𝑃 ≠ 1 → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2𝑜 ↔
{𝑛 ∈ ℕ ∣
𝑛 ∥ 𝑃} = {1, 𝑃}))) |
49 | 48 | imp 444 |
1
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2𝑜 ↔
{𝑛 ∈ ℕ ∣
𝑛 ∥ 𝑃} = {1, 𝑃})) |