Step | Hyp | Ref
| Expression |
1 | | ovolsca.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐴 ⊆
ℝ) |
3 | | ovolsca.4 |
. . . . . 6
⊢ (𝜑 → (vol*‘𝐴) ∈
ℝ) |
4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(vol*‘𝐴) ∈
ℝ) |
5 | | ovolsca.2 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
6 | | rpmulcl 11731 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝐶 · 𝑦) ∈
ℝ+) |
7 | 5, 6 | sylan 487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝐶 · 𝑦) ∈
ℝ+) |
8 | | eqid 2610 |
. . . . . 6
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
9 | 8 | ovolgelb 23055 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ (𝐶 ·
𝑦) ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦)))) |
10 | 2, 4, 7, 9 | syl3anc 1318 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦)))) |
11 | 1 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ℝ) |
12 | 5 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐶 ∈
ℝ+) |
13 | | ovolsca.3 |
. . . . . 6
⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
14 | 13 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) |
15 | 3 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐴) ∈ ℝ) |
16 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝑓‘𝑚) = (𝑓‘𝑛)) |
17 | 16 | fveq2d 6107 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (1st ‘(𝑓‘𝑚)) = (1st ‘(𝑓‘𝑛))) |
18 | 17 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((1st ‘(𝑓‘𝑚)) / 𝐶) = ((1st ‘(𝑓‘𝑛)) / 𝐶)) |
19 | 16 | fveq2d 6107 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘𝑚)) = (2nd ‘(𝑓‘𝑛))) |
20 | 19 | oveq1d 6564 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((2nd ‘(𝑓‘𝑚)) / 𝐶) = ((2nd ‘(𝑓‘𝑛)) / 𝐶)) |
21 | 18, 20 | opeq12d 4348 |
. . . . . 6
⊢ (𝑚 = 𝑛 → 〈((1st ‘(𝑓‘𝑚)) / 𝐶), ((2nd ‘(𝑓‘𝑚)) / 𝐶)〉 = 〈((1st
‘(𝑓‘𝑛)) / 𝐶), ((2nd ‘(𝑓‘𝑛)) / 𝐶)〉) |
22 | 21 | cbvmptv 4678 |
. . . . 5
⊢ (𝑚 ∈ ℕ ↦
〈((1st ‘(𝑓‘𝑚)) / 𝐶), ((2nd ‘(𝑓‘𝑚)) / 𝐶)〉) = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝑓‘𝑛)) / 𝐶), ((2nd ‘(𝑓‘𝑛)) / 𝐶)〉) |
23 | | elmapi 7765 |
. . . . . 6
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
24 | 23 | ad2antrl 760 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
25 | | simprrl 800 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝐴 ⊆ ∪ ran
((,) ∘ 𝑓)) |
26 | | simplr 788 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → 𝑦 ∈ ℝ+) |
27 | | simprrr 801 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑦))) |
28 | 11, 12, 14, 15, 8, 22, 24, 25, 26, 27 | ovolscalem1 23088 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐶 · 𝑦))))) → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)) |
29 | 10, 28 | rexlimddv 3017 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(vol*‘𝐵) ≤
(((vol*‘𝐴) / 𝐶) + 𝑦)) |
30 | 29 | ralrimiva 2949 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦)) |
31 | | ssrab2 3650 |
. . . . 5
⊢ {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴} ⊆ ℝ |
32 | 13, 31 | syl6eqss 3618 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
33 | | ovolcl 23053 |
. . . 4
⊢ (𝐵 ⊆ ℝ →
(vol*‘𝐵) ∈
ℝ*) |
34 | 32, 33 | syl 17 |
. . 3
⊢ (𝜑 → (vol*‘𝐵) ∈
ℝ*) |
35 | 3, 5 | rerpdivcld 11779 |
. . 3
⊢ (𝜑 → ((vol*‘𝐴) / 𝐶) ∈ ℝ) |
36 | | xralrple 11910 |
. . 3
⊢
(((vol*‘𝐵)
∈ ℝ* ∧ ((vol*‘𝐴) / 𝐶) ∈ ℝ) → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))) |
37 | 34, 35, 36 | syl2anc 691 |
. 2
⊢ (𝜑 → ((vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶) ↔ ∀𝑦 ∈ ℝ+ (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑦))) |
38 | 30, 37 | mpbird 246 |
1
⊢ (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) |