MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolscalem2 Structured version   Unicode version

Theorem ovolscalem2 21653
Description: Lemma for ovolshft 21650. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolsca.1  |-  ( ph  ->  A  C_  RR )
ovolsca.2  |-  ( ph  ->  C  e.  RR+ )
ovolsca.3  |-  ( ph  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
ovolsca.4  |-  ( ph  ->  ( vol* `  A )  e.  RR )
Assertion
Ref Expression
ovolscalem2  |-  ( ph  ->  ( vol* `  B )  <_  (
( vol* `  A )  /  C
) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ovolscalem2
Dummy variables  f  n  y  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolsca.1 . . . . . 6  |-  ( ph  ->  A  C_  RR )
21adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
3 ovolsca.4 . . . . . 6  |-  ( ph  ->  ( vol* `  A )  e.  RR )
43adantr 465 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( vol* `  A )  e.  RR )
5 ovolsca.2 . . . . . 6  |-  ( ph  ->  C  e.  RR+ )
6 rpmulcl 11230 . . . . . 6  |-  ( ( C  e.  RR+  /\  y  e.  RR+ )  ->  ( C  x.  y )  e.  RR+ )
75, 6sylan 471 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( C  x.  y )  e.  RR+ )
8 eqid 2460 . . . . . 6  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
98ovolgelb 21619 . . . . 5  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  ( C  x.  y )  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( C  x.  y ) ) ) )
102, 4, 7, 9syl3anc 1223 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( C  x.  y ) ) ) )
111ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  A  C_  RR )
125ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  C  e.  RR+ )
13 ovolsca.3 . . . . . 6  |-  ( ph  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
1413ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  B  =  { x  e.  RR  |  ( C  x.  x )  e.  A } )
153ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  ( vol* `  A )  e.  RR )
16 fveq2 5857 . . . . . . . . 9  |-  ( m  =  n  ->  (
f `  m )  =  ( f `  n ) )
1716fveq2d 5861 . . . . . . . 8  |-  ( m  =  n  ->  ( 1st `  ( f `  m ) )  =  ( 1st `  (
f `  n )
) )
1817oveq1d 6290 . . . . . . 7  |-  ( m  =  n  ->  (
( 1st `  (
f `  m )
)  /  C )  =  ( ( 1st `  ( f `  n
) )  /  C
) )
1916fveq2d 5861 . . . . . . . 8  |-  ( m  =  n  ->  ( 2nd `  ( f `  m ) )  =  ( 2nd `  (
f `  n )
) )
2019oveq1d 6290 . . . . . . 7  |-  ( m  =  n  ->  (
( 2nd `  (
f `  m )
)  /  C )  =  ( ( 2nd `  ( f `  n
) )  /  C
) )
2118, 20opeq12d 4214 . . . . . 6  |-  ( m  =  n  ->  <. (
( 1st `  (
f `  m )
)  /  C ) ,  ( ( 2nd `  ( f `  m
) )  /  C
) >.  =  <. (
( 1st `  (
f `  n )
)  /  C ) ,  ( ( 2nd `  ( f `  n
) )  /  C
) >. )
2221cbvmptv 4531 . . . . 5  |-  ( m  e.  NN  |->  <. (
( 1st `  (
f `  m )
)  /  C ) ,  ( ( 2nd `  ( f `  m
) )  /  C
) >. )  =  ( n  e.  NN  |->  <.
( ( 1st `  (
f `  n )
)  /  C ) ,  ( ( 2nd `  ( f `  n
) )  /  C
) >. )
23 elmapi 7430 . . . . . 6  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2423ad2antrl 727 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
25 simprrl 763 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  A  C_ 
U. ran  ( (,)  o.  f ) )
26 simplr 754 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  y  e.  RR+ )
27 simprrr 764 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( C  x.  y ) ) )
2811, 12, 14, 15, 8, 22, 24, 25, 26, 27ovolscalem1 21652 . . . 4  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( C  x.  y ) ) ) ) )  ->  ( vol* `  B )  <_  ( ( ( vol* `  A
)  /  C )  +  y ) )
2910, 28rexlimddv 2952 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( vol* `  B )  <_ 
( ( ( vol* `  A )  /  C )  +  y ) )
3029ralrimiva 2871 . 2  |-  ( ph  ->  A. y  e.  RR+  ( vol* `  B
)  <_  ( (
( vol* `  A )  /  C
)  +  y ) )
31 ssrab2 3578 . . . . 5  |-  { x  e.  RR  |  ( C  x.  x )  e.  A }  C_  RR
3213, 31syl6eqss 3547 . . . 4  |-  ( ph  ->  B  C_  RR )
33 ovolcl 21617 . . . 4  |-  ( B 
C_  RR  ->  ( vol* `  B )  e.  RR* )
3432, 33syl 16 . . 3  |-  ( ph  ->  ( vol* `  B )  e.  RR* )
353, 5rerpdivcld 11272 . . 3  |-  ( ph  ->  ( ( vol* `  A )  /  C
)  e.  RR )
36 xralrple 11393 . . 3  |-  ( ( ( vol* `  B )  e.  RR*  /\  ( ( vol* `  A )  /  C
)  e.  RR )  ->  ( ( vol* `  B )  <_  ( ( vol* `  A )  /  C
)  <->  A. y  e.  RR+  ( vol* `  B
)  <_  ( (
( vol* `  A )  /  C
)  +  y ) ) )
3734, 35, 36syl2anc 661 . 2  |-  ( ph  ->  ( ( vol* `  B )  <_  (
( vol* `  A )  /  C
)  <->  A. y  e.  RR+  ( vol* `  B
)  <_  ( (
( vol* `  A )  /  C
)  +  y ) ) )
3830, 37mpbird 232 1  |-  ( ph  ->  ( vol* `  B )  <_  (
( vol* `  A )  /  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   {crab 2811    i^i cin 3468    C_ wss 3469   <.cop 4026   U.cuni 4238   class class class wbr 4440    |-> cmpt 4498    X. cxp 4990   ran crn 4993    o. ccom 4996   -->wf 5575   ` cfv 5579  (class class class)co 6275   1stc1st 6772   2ndc2nd 6773    ^m cmap 7410   supcsup 7889   RRcr 9480   1c1 9482    + caddc 9484    x. cmul 9486   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   RR+crp 11209   (,)cioo 11518    seqcseq 12063   abscabs 13017   vol*covol 21602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-ioo 11522  df-ico 11524  df-fz 11662  df-fzo 11782  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-ovol 21604
This theorem is referenced by:  ovolsca  21654
  Copyright terms: Public domain W3C validator