Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsupge0 | Structured version Visualization version GIF version |
Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnsupge0.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsupge0.2 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) |
ovnsupge0.3 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
Ref | Expression |
---|---|
ovnsupge0 | ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnsupge0.3 | . 2 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
2 | simp3 1056 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) | |
3 | nnex 10903 | . . . . . . . . . . . 12 ⊢ ℕ ∈ V | |
4 | 3 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → ℕ ∈ V) |
5 | icossicc 12131 | . . . . . . . . . . . . 13 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
6 | nfv 1830 | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) | |
7 | ovnsupge0.1 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
8 | 7 | ad2antrr 758 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
9 | elmapi 7765 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)) | |
10 | 9 | ad2antlr 759 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)) |
11 | simpr 476 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
12 | 6, 8, 10, 11 | ovnprodcl 39444 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,)+∞)) |
13 | 5, 12 | sseldi 3566 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,]+∞)) |
14 | eqid 2610 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) | |
15 | 13, 14 | fmptd 6292 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))):ℕ⟶(0[,]+∞)) |
16 | 4, 15 | sge0cl 39274 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
17 | 16 | 3adant3 1074 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
18 | 2, 17 | eqeltrd 2688 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)) |
19 | 18 | 3adant3l 1314 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑧 ∈ (0[,]+∞)) |
20 | 19 | 3exp 1256 | . . . . . 6 ⊢ (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
22 | 21 | rexlimdv 3012 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
23 | 22 | ralrimiva 2949 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
24 | rabss 3642 | . . 3 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞) ↔ ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) | |
25 | 23, 24 | sylibr 223 | . 2 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞)) |
26 | 1, 25 | syl5eqss 3612 | 1 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {crab 2900 Vcvv 3173 ⊆ wss 3540 ∪ ciun 4455 ↦ cmpt 4643 × cxp 5036 ∘ ccom 5042 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Xcixp 7794 Fincfn 7841 ℝcr 9814 0cc0 9815 +∞cpnf 9950 ℝ*cxr 9952 ℕcn 10897 [,)cico 12048 [,]cicc 12049 ∏cprod 14474 volcvol 23039 Σ^csumge0 39255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-rlim 14068 df-sum 14265 df-prod 14475 df-rest 15906 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-cmp 21000 df-ovol 23040 df-vol 23041 df-sumge0 39256 |
This theorem is referenced by: ovnlerp 39452 ovnf 39453 |
Copyright terms: Public domain | W3C validator |