Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrmtngnrm | Structured version Visualization version GIF version |
Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021.) |
Ref | Expression |
---|---|
nrmtngdist.t | ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) |
Ref | Expression |
---|---|
nrmtngnrm | ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 22213 | . . 3 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
2 | nrmtngdist.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp (norm‘𝐺)) | |
3 | eqid 2610 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 2, 3 | nrmtngdist 22271 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) |
5 | eqid 2610 | . . . . . 6 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
6 | eqid 2610 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
7 | eqid 2610 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
8 | eqid 2610 | . . . . . 6 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
9 | 5, 6, 7, 3, 8 | isngp2 22211 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) |
10 | 3, 8 | msmet 22072 | . . . . . 6 ⊢ (𝐺 ∈ MetSp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺))) |
11 | 10 | 3ad2ant2 1076 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ((norm‘𝐺) ∘ (-g‘𝐺)) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺))) |
12 | 9, 11 | sylbi 206 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (Met‘(Base‘𝐺))) |
13 | 4, 12 | eqeltrd 2688 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (dist‘𝑇) ∈ (Met‘(Base‘𝐺))) |
14 | 3, 5 | nmf 22229 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺):(Base‘𝐺)⟶ℝ) |
15 | eqid 2610 | . . . . 5 ⊢ (dist‘𝑇) = (dist‘𝑇) | |
16 | 2, 3, 15 | tngngp2 22266 | . . . 4 ⊢ ((norm‘𝐺):(Base‘𝐺)⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
17 | 14, 16 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘(Base‘𝐺))))) |
18 | 1, 13, 17 | mpbir2and 959 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp) |
19 | 1, 14 | jca 553 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ)) |
20 | reex 9906 | . . . . 5 ⊢ ℝ ∈ V | |
21 | 2, 3, 20 | tngnm 22265 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (norm‘𝐺):(Base‘𝐺)⟶ℝ) → (norm‘𝐺) = (norm‘𝑇)) |
22 | 19, 21 | syl 17 | . . 3 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝐺) = (norm‘𝑇)) |
23 | 22 | eqcomd 2616 | . 2 ⊢ (𝐺 ∈ NrmGrp → (norm‘𝑇) = (norm‘𝐺)) |
24 | 18, 23 | jca 553 | 1 ⊢ (𝐺 ∈ NrmGrp → (𝑇 ∈ NrmGrp ∧ (norm‘𝑇) = (norm‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 × cxp 5036 ↾ cres 5040 ∘ ccom 5042 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 Basecbs 15695 distcds 15777 Grpcgrp 17245 -gcsg 17247 Metcme 19553 MetSpcmt 21933 normcnm 22191 NrmGrpcngp 22192 toNrmGrp ctng 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-tset 15787 df-ds 15791 df-rest 15906 df-topn 15907 df-0g 15925 df-topgen 15927 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-xms 21935 df-ms 21936 df-nm 22197 df-ngp 22198 df-tng 22199 |
This theorem is referenced by: tngngpim 22273 |
Copyright terms: Public domain | W3C validator |