MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndomo Structured version   Visualization version   GIF version

Theorem nndomo 8039
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomo
StepHypRef Expression
1 php2 8030 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
21ex 449 . . . . 5 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
3 domnsym 7971 . . . . 5 (𝐴𝐵 → ¬ 𝐵𝐴)
42, 3nsyli 154 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
54adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ¬ 𝐵𝐴))
6 nnord 6965 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
7 nnord 6965 . . . 4 (𝐵 ∈ ω → Ord 𝐵)
8 ordtri1 5673 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
9 ordelpss 5668 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
109ancoms 468 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
1110notbid 307 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
128, 11bitrd 267 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
136, 7, 12syl2an 493 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
145, 13sylibrd 248 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
15 ssdomg 7887 . . 3 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
1615adantl 481 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
1714, 16impbid 201 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wcel 1977  wss 3540  wpss 3541   class class class wbr 4583  Ord word 5639  ωcom 6957  cdom 7839  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  nnsdomo  8040
  Copyright terms: Public domain W3C validator