MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndomo Structured version   Unicode version

Theorem nndomo 7704
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )

Proof of Theorem nndomo
StepHypRef Expression
1 php2 7695 . . . . . 6  |-  ( ( A  e.  om  /\  B  C.  A )  ->  B  ~<  A )
21ex 432 . . . . 5  |-  ( A  e.  om  ->  ( B  C.  A  ->  B  ~<  A ) )
3 domnsym 7636 . . . . 5  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
42, 3nsyli 141 . . . 4  |-  ( A  e.  om  ->  ( A  ~<_  B  ->  -.  B  C.  A ) )
54adantr 463 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  ->  -.  B  C.  A ) )
6 nnord 6681 . . . 4  |-  ( A  e.  om  ->  Ord  A )
7 nnord 6681 . . . 4  |-  ( B  e.  om  ->  Ord  B )
8 ordtri1 4900 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
9 ordelpss 4895 . . . . . . 7  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  e.  A  <->  B  C.  A ) )
109ancoms 451 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  <->  B  C.  A ) )
1110notbid 292 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  B  e.  A  <->  -.  B  C.  A ) )
128, 11bitrd 253 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  C.  A
) )
136, 7, 12syl2an 475 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  C.  A )
)
145, 13sylibrd 234 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  ->  A  C_  B ) )
15 ssdomg 7554 . . 3  |-  ( B  e.  om  ->  ( A  C_  B  ->  A  ~<_  B ) )
1615adantl 464 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  A  ~<_  B ) )
1714, 16impbid 191 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ~<_  B  <->  A  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823    C_ wss 3461    C. wpss 3462   class class class wbr 4439   Ord word 4866   omcom 6673    ~<_ cdom 7507    ~< csdm 7508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512
This theorem is referenced by:  nnsdomo  7705  omsucdomOLD  7706
  Copyright terms: Public domain W3C validator