Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnsdomo | Structured version Visualization version GIF version |
Description: Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
nnsdomo | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nndomo 8039 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
2 | nneneq 8028 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 2 | notbid 307 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐴 ≈ 𝐵 ↔ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | anbi12d 743 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵))) |
5 | brsdom 7864 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
6 | dfpss2 3654 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
7 | 4, 5, 6 | 3bitr4g 302 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ⊊ wpss 3541 class class class wbr 4583 ωcom 6957 ≈ cen 7838 ≼ cdom 7839 ≺ csdm 7840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |