Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmblolbi | Structured version Visualization version GIF version |
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmblolbi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmblolbi.4 | ⊢ 𝐿 = (normCV‘𝑈) |
nmblolbi.5 | ⊢ 𝑀 = (normCV‘𝑊) |
nmblolbi.6 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmblolbi.7 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
nmblolbi.u | ⊢ 𝑈 ∈ NrmCVec |
nmblolbi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmblolbi | ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6102 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑇‘𝐴) = (if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) | |
2 | 1 | fveq2d 6107 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑀‘(𝑇‘𝐴)) = (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴))) |
3 | fveq2 6103 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → (𝑁‘𝑇) = (𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)))) | |
4 | 3 | oveq1d 6564 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑁‘𝑇) · (𝐿‘𝐴)) = ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
5 | 2, 4 | breq12d 4596 | . . . 4 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)) ↔ (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴)))) |
6 | 5 | imbi2d 329 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) → ((𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) ↔ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))))) |
7 | nmblolbi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | nmblolbi.4 | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
9 | nmblolbi.5 | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
10 | nmblolbi.6 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
11 | nmblolbi.7 | . . . 4 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
12 | nmblolbi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
13 | nmblolbi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
14 | eqid 2610 | . . . . . . 7 ⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) | |
15 | 14, 11 | 0blo 27031 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐵) |
16 | 12, 13, 15 | mp2an 704 | . . . . 5 ⊢ (𝑈 0op 𝑊) ∈ 𝐵 |
17 | 16 | elimel 4100 | . . . 4 ⊢ if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵 |
18 | 7, 8, 9, 10, 11, 12, 13, 17 | nmblolbii 27038 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑀‘(if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))‘𝐴)) ≤ ((𝑁‘if(𝑇 ∈ 𝐵, 𝑇, (𝑈 0op 𝑊))) · (𝐿‘𝐴))) |
19 | 6, 18 | dedth 4089 | . 2 ⊢ (𝑇 ∈ 𝐵 → (𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴)))) |
20 | 19 | imp 444 | 1 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ifcif 4036 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 · cmul 9820 ≤ cle 9954 NrmCVeccnv 26823 BaseSetcba 26825 normCVcnmcv 26829 normOpOLD cnmoo 26980 BLnOp cblo 26981 0op c0o 26982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-grpo 26731 df-gid 26732 df-ginv 26733 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-nmcv 26839 df-lno 26983 df-nmoo 26984 df-blo 26985 df-0o 26986 |
This theorem is referenced by: isblo3i 27040 blometi 27042 ubthlem3 27112 htthlem 27158 |
Copyright terms: Public domain | W3C validator |