MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo3i Structured version   Visualization version   GIF version

Theorem isblo3i 27040
Description: The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
isblo3i (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐿   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem isblo3i
StepHypRef Expression
1 isblo3i.u . . . 4 𝑈 ∈ NrmCVec
2 isblo3i.w . . . 4 𝑊 ∈ NrmCVec
3 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
4 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
53, 4bloln 27023 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇𝐿)
61, 2, 5mp3an12 1406 . . 3 (𝑇𝐵𝑇𝐿)
7 isblo3i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
8 eqid 2610 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
9 eqid 2610 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
107, 8, 9, 4nmblore 27025 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
111, 2, 10mp3an12 1406 . . . 4 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
12 isblo3i.m . . . . . 6 𝑀 = (normCV𝑈)
13 isblo3i.n . . . . . 6 𝑁 = (normCV𝑊)
147, 12, 13, 9, 4, 1, 2nmblolbi 27039 . . . . 5 ((𝑇𝐵𝑦𝑋) → (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1514ralrimiva 2949 . . . 4 (𝑇𝐵 → ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
16 oveq1 6556 . . . . . . 7 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (𝑥 · (𝑀𝑦)) = (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦)))
1716breq2d 4595 . . . . . 6 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1817ralbidv 2969 . . . . 5 (𝑥 = ((𝑈 normOpOLD 𝑊)‘𝑇) → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))))
1918rspcev 3282 . . . 4 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
2011, 15, 19syl2anc 691 . . 3 (𝑇𝐵 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
216, 20jca 553 . 2 (𝑇𝐵 → (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
22 simp1 1054 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐿)
237, 8, 3lnof 26994 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
241, 2, 23mp3an12 1406 . . . . . 6 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
257, 8, 9nmoxr 27005 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
261, 2, 25mp3an12 1406 . . . . . . . 8 (𝑇:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
27263ad2ant1 1075 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ*)
28 recn 9905 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2928abscld 14023 . . . . . . . . 9 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
3029rexrd 9968 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ*)
31303ad2ant2 1076 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) ∈ ℝ*)
32 pnfxr 9971 . . . . . . . 8 +∞ ∈ ℝ*
3332a1i 11 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → +∞ ∈ ℝ*)
347, 8, 12, 13, 9, 1, 2nmoub3i 27012 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) ≤ (abs‘𝑥))
35 ltpnf 11830 . . . . . . . . 9 ((abs‘𝑥) ∈ ℝ → (abs‘𝑥) < +∞)
3629, 35syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (abs‘𝑥) < +∞)
37363ad2ant2 1076 . . . . . . 7 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → (abs‘𝑥) < +∞)
3827, 31, 33, 34, 37xrlelttrd 11867 . . . . . 6 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
3924, 38syl3an1 1351 . . . . 5 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)
409, 3, 4isblo 27021 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞)))
411, 2, 40mp2an 704 . . . . 5 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑊)‘𝑇) < +∞))
4222, 39, 41sylanbrc 695 . . . 4 ((𝑇𝐿𝑥 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4342rexlimdv3a 3015 . . 3 (𝑇𝐿 → (∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) → 𝑇𝐵))
4443imp 444 . 2 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
4521, 44impbii 198 1 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  cr 9814   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  abscabs 13822  NrmCVeccnv 26823  BaseSetcba 26825  normCVcnmcv 26829   LnOp clno 26979   normOpOLD cnmoo 26980   BLnOp cblo 26981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-lno 26983  df-nmoo 26984  df-blo 26985  df-0o 26986
This theorem is referenced by:  blo3i  27041  blocnilem  27043
  Copyright terms: Public domain W3C validator