MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nltmnf Structured version   Visualization version   GIF version

Theorem nltmnf 11839
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
nltmnf (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)

Proof of Theorem nltmnf
StepHypRef Expression
1 mnfnre 9961 . . . . . . 7 -∞ ∉ ℝ
21neli 2885 . . . . . 6 ¬ -∞ ∈ ℝ
32intnan 951 . . . . 5 ¬ (𝐴 ∈ ℝ ∧ -∞ ∈ ℝ)
43intnanr 952 . . . 4 ¬ ((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞)
5 pnfnemnf 9973 . . . . . 6 +∞ ≠ -∞
65nesymi 2839 . . . . 5 ¬ -∞ = +∞
76intnan 951 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ = +∞)
84, 7pm3.2ni 895 . . 3 ¬ (((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞))
96intnan 951 . . . 4 ¬ (𝐴 ∈ ℝ ∧ -∞ = +∞)
102intnan 951 . . . 4 ¬ (𝐴 = -∞ ∧ -∞ ∈ ℝ)
119, 10pm3.2ni 895 . . 3 ¬ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ))
128, 11pm3.2ni 895 . 2 ¬ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))
13 mnfxr 9975 . . 3 -∞ ∈ ℝ*
14 ltxr 11825 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1513, 14mpan2 703 . 2 (𝐴 ∈ ℝ* → (𝐴 < -∞ ↔ ((((𝐴 ∈ ℝ ∧ -∞ ∈ ℝ) ∧ 𝐴 < -∞) ∨ (𝐴 = -∞ ∧ -∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ -∞ = +∞) ∨ (𝐴 = -∞ ∧ -∞ ∈ ℝ)))))
1612, 15mtbiri 316 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cr 9814   < cltrr 9819  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958
This theorem is referenced by:  mnfle  11845  xrltnsym  11846  xrlttr  11849  qbtwnxr  11905  xltnegi  11921  xmullem2  11967  xmulasslem2  11984  xlemul1a  11990  xrsupexmnf  12007  xrsupsslem  12009  xrinfmsslem  12010  xrsup0  12025  reltxrnmnf  12043  infmremnf  12044  mnfnei  20835  blssioo  22406  deg1add  23667  icorempt2  32375  relowlssretop  32387  supxrgere  38490  supxrgelem  38494  infxrunb2  38525  iccpartiltu  39960
  Copyright terms: Public domain W3C validator