Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb2 Structured version   Visualization version   GIF version

Theorem infxrunb2 38525
 Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
infxrunb2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
Distinct variable group:   𝑦,𝐴,𝑥

Proof of Theorem infxrunb2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . . 5 𝑥 𝐴 ⊆ ℝ*
2 nfra1 2925 . . . . 5 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥
31, 2nfan 1816 . . . 4 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
4 nfv 1830 . . . . 5 𝑦 𝐴 ⊆ ℝ*
5 nfcv 2751 . . . . . 6 𝑦
6 nfre1 2988 . . . . . 6 𝑦𝑦𝐴 𝑦 < 𝑥
75, 6nfral 2929 . . . . 5 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥
84, 7nfan 1816 . . . 4 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
9 simpl 472 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → 𝐴 ⊆ ℝ*)
10 mnfxr 9975 . . . . 5 -∞ ∈ ℝ*
1110a1i 11 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → -∞ ∈ ℝ*)
12 ssel2 3563 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
13 nltmnf 11839 . . . . . . 7 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
1412, 13syl 17 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥𝐴) → ¬ 𝑥 < -∞)
1514ralrimiva 2949 . . . . 5 (𝐴 ⊆ ℝ* → ∀𝑥𝐴 ¬ 𝑥 < -∞)
1615adantr 480 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → ∀𝑥𝐴 ¬ 𝑥 < -∞)
17 ralimralim 38279 . . . . 5 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
1817adantl 481 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ (-∞ < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
193, 8, 9, 11, 16, 18infxr 38524 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥) → inf(𝐴, ℝ*, < ) = -∞)
2019ex 449 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 → inf(𝐴, ℝ*, < ) = -∞))
21 rexr 9964 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2221adantl 481 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 simpl 472 . . . . . . 7 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) = -∞)
24 mnflt 11833 . . . . . . . 8 (𝑥 ∈ ℝ → -∞ < 𝑥)
2524adantl 481 . . . . . . 7 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → -∞ < 𝑥)
2623, 25eqbrtrd 4605 . . . . . 6 ((inf(𝐴, ℝ*, < ) = -∞ ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥)
2726adantll 746 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → inf(𝐴, ℝ*, < ) < 𝑥)
28 xrltso 11850 . . . . . . 7 < Or ℝ*
2928a1i 11 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → < Or ℝ*)
30 xrinfmss 12012 . . . . . . 7 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦𝐴 𝑦 < 𝑤)))
3130ad2antrr 758 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ* (𝑧 < 𝑤 → ∃𝑦𝐴 𝑦 < 𝑤)))
3229, 31infglb 8279 . . . . 5 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ* ∧ inf(𝐴, ℝ*, < ) < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥))
3322, 27, 32mp2and 711 . . . 4 (((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑥)
3433ralrimiva 2949 . . 3 ((𝐴 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) = -∞) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥)
3534ex 449 . 2 (𝐴 ⊆ ℝ* → (inf(𝐴, ℝ*, < ) = -∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥))
3620, 35impbid 201 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   Or wor 4958  infcinf 8230  ℝcr 9814  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148 This theorem is referenced by:  infxrbnd2  38526  infleinf  38529
 Copyright terms: Public domain W3C validator