Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infmremnf | Structured version Visualization version GIF version |
Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infmremnf | ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reltxrnmnf 12043 | . 2 ⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) | |
2 | xrltso 11850 | . . . 4 ⊢ < Or ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → < Or ℝ*) |
4 | mnfxr 9975 | . . . 4 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → -∞ ∈ ℝ*) |
6 | rexr 9964 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
7 | nltmnf 11839 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
9 | 8 | adantl 481 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ 𝑦 ∈ ℝ) → ¬ 𝑦 < -∞) |
10 | breq2 4587 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (-∞ < 𝑥 ↔ -∞ < 𝑦)) | |
11 | breq2 4587 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑧 < 𝑥 ↔ 𝑧 < 𝑦)) | |
12 | 11 | rexbidv 3034 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (∃𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
13 | 10, 12 | imbi12d 333 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ↔ (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
14 | 13 | rspcv 3278 | . . . . . 6 ⊢ (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → (-∞ < 𝑦 → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
15 | 14 | com23 84 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → (-∞ < 𝑦 → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦))) |
16 | 15 | imp 444 | . . . 4 ⊢ ((𝑦 ∈ ℝ* ∧ -∞ < 𝑦) → (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦)) |
17 | 16 | impcom 445 | . . 3 ⊢ ((∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) ∧ (𝑦 ∈ ℝ* ∧ -∞ < 𝑦)) → ∃𝑧 ∈ ℝ 𝑧 < 𝑦) |
18 | 3, 5, 9, 17 | eqinfd 8274 | . 2 ⊢ (∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑧 ∈ ℝ 𝑧 < 𝑥) → inf(ℝ, ℝ*, < ) = -∞) |
19 | 1, 18 | ax-mp 5 | 1 ⊢ inf(ℝ, ℝ*, < ) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 class class class wbr 4583 Or wor 4958 infcinf 8230 ℝcr 9814 -∞cmnf 9951 ℝ*cxr 9952 < clt 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |