MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpocelbl Structured version   Visualization version   GIF version

Theorem ngpocelbl 22318
Description: Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007.) (Revised by AV, 14-Oct-2021.)
Hypotheses
Ref Expression
ngpocelbl.n 𝑁 = (norm‘𝐺)
ngpocelbl.x 𝑋 = (Base‘𝐺)
ngpocelbl.p + = (+g𝐺)
ngpocelbl.d 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
ngpocelbl ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))

Proof of Theorem ngpocelbl
StepHypRef Expression
1 nlmngp 22291 . . . . . . 7 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
2 ngpocelbl.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 ngpocelbl.d . . . . . . . 8 𝐷 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
42, 3ngpmet 22217 . . . . . . 7 (𝐺 ∈ NrmGrp → 𝐷 ∈ (Met‘𝑋))
5 metxmet 21949 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
61, 4, 53syl 18 . . . . . 6 (𝐺 ∈ NrmMod → 𝐷 ∈ (∞Met‘𝑋))
76anim1i 590 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ*) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
873adant3 1074 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*))
9 simp3l 1082 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝑃𝑋)
10 ngpgrp 22213 . . . . . . . . 9 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
111, 10syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Grp)
12113ad2ant1 1075 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Grp)
13 simp3 1056 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋𝐴𝑋))
14 3anass 1035 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Grp ∧ (𝑃𝑋𝐴𝑋)))
1512, 13, 14sylanbrc 695 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋))
16 ngpocelbl.p . . . . . . 7 + = (+g𝐺)
172, 16grpcl 17253 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃𝑋𝐴𝑋) → (𝑃 + 𝐴) ∈ 𝑋)
1815, 17syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃 + 𝐴) ∈ 𝑋)
199, 18jca 553 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋))
208, 19jca 553 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)))
21 elbl2 22005 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
2220, 21syl 17 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷(𝑃 + 𝐴)) < 𝑅))
233oveqi 6562 . . . . . 6 (𝑃𝐷(𝑃 + 𝐴)) = (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴))
24 ovres 6698 . . . . . 6 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃((dist‘𝐺) ↾ (𝑋 × 𝑋))(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2523, 24syl5eq 2656 . . . . 5 ((𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2619, 25syl 17 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑃(dist‘𝐺)(𝑃 + 𝐴)))
2713ad2ant1 1075 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ NrmGrp)
28 ngpocelbl.n . . . . . 6 𝑁 = (norm‘𝐺)
29 eqid 2610 . . . . . 6 (-g𝐺) = (-g𝐺)
30 eqid 2610 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
3128, 2, 29, 30ngpdsr 22219 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝑃𝑋 ∧ (𝑃 + 𝐴) ∈ 𝑋) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
3227, 9, 18, 31syl3anc 1318 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃(dist‘𝐺)(𝑃 + 𝐴)) = (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)))
33 nlmlmod 22292 . . . . . . . . 9 (𝐺 ∈ NrmMod → 𝐺 ∈ LMod)
34 lmodabl 18733 . . . . . . . . 9 (𝐺 ∈ LMod → 𝐺 ∈ Abel)
3533, 34syl 17 . . . . . . . 8 (𝐺 ∈ NrmMod → 𝐺 ∈ Abel)
36353ad2ant1 1075 . . . . . . 7 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → 𝐺 ∈ Abel)
37 3anass 1035 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) ↔ (𝐺 ∈ Abel ∧ (𝑃𝑋𝐴𝑋)))
3836, 13, 37sylanbrc 695 . . . . . 6 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋))
392, 16, 29ablpncan2 18044 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑃𝑋𝐴𝑋) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4038, 39syl 17 . . . . 5 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴)(-g𝐺)𝑃) = 𝐴)
4140fveq2d 6107 . . . 4 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑁‘((𝑃 + 𝐴)(-g𝐺)𝑃)) = (𝑁𝐴))
4226, 32, 413eqtrd 2648 . . 3 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷(𝑃 + 𝐴)) = (𝑁𝐴))
4342breq1d 4593 . 2 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃𝐷(𝑃 + 𝐴)) < 𝑅 ↔ (𝑁𝐴) < 𝑅))
4422, 43bitrd 267 1 ((𝐺 ∈ NrmMod ∧ 𝑅 ∈ ℝ* ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃 + 𝐴) ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑁𝐴) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583   × cxp 5036  cres 5040  cfv 5804  (class class class)co 6549  *cxr 9952   < clt 9953  Basecbs 15695  +gcplusg 15768  distcds 15777  Grpcgrp 17245  -gcsg 17247  Abelcabl 18017  LModclmod 18686  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  normcnm 22191  NrmGrpcngp 22192  NrmModcnlm 22195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-nlm 22201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator