Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nbusgredgeu0 Structured version   Visualization version   GIF version

Theorem nbusgredgeu0 40596
 Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 27-Oct-2020.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
Assertion
Ref Expression
nbusgredgeu0 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐼 𝑖 = {𝑈, 𝑀})
Distinct variable groups:   𝑖,𝐸,𝑒   𝑖,𝐺   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖,𝑒   𝑖,𝑉
Allowed substitution hints:   𝐺(𝑒)   𝐼(𝑒,𝑖)   𝑀(𝑒)   𝑁(𝑒)   𝑉(𝑒)

Proof of Theorem nbusgredgeu0
StepHypRef Expression
1 simpll 786 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝐺 ∈ USGraph )
2 nbusgrf1o1.n . . . . . . . 8 𝑁 = (𝐺 NeighbVtx 𝑈)
32eleq2i 2680 . . . . . . 7 (𝑀𝑁𝑀 ∈ (𝐺 NeighbVtx 𝑈))
4 nbgrsym 40591 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
54adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) ↔ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
65biimpd 218 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀 ∈ (𝐺 NeighbVtx 𝑈) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
73, 6syl5bi 231 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑀𝑁𝑈 ∈ (𝐺 NeighbVtx 𝑀)))
87imp 444 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝑈 ∈ (𝐺 NeighbVtx 𝑀))
9 nbusgrf1o1.e . . . . . 6 𝐸 = (Edg‘𝐺)
109nbusgredgeu 40594 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈 ∈ (𝐺 NeighbVtx 𝑀)) → ∃!𝑖𝐸 𝑖 = {𝑈, 𝑀})
111, 8, 10syl2anc 691 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐸 𝑖 = {𝑈, 𝑀})
12 df-reu 2903 . . . 4 (∃!𝑖𝐸 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀}))
1311, 12sylib 207 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀}))
14 nfv 1830 . . . 4 𝑖((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁)
15 anass 679 . . . . 5 (((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖𝐸 ∧ (𝑈𝑖𝑖 = {𝑈, 𝑀})))
16 prid1g 4239 . . . . . . . . . 10 (𝑈𝑉𝑈 ∈ {𝑈, 𝑀})
1716ad2antlr 759 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → 𝑈 ∈ {𝑈, 𝑀})
18 eleq2 2677 . . . . . . . . 9 (𝑖 = {𝑈, 𝑀} → (𝑈𝑖𝑈 ∈ {𝑈, 𝑀}))
1917, 18syl5ibrcom 236 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (𝑖 = {𝑈, 𝑀} → 𝑈𝑖))
2019pm4.71rd 665 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (𝑖 = {𝑈, 𝑀} ↔ (𝑈𝑖𝑖 = {𝑈, 𝑀})))
2120bicomd 212 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ((𝑈𝑖𝑖 = {𝑈, 𝑀}) ↔ 𝑖 = {𝑈, 𝑀}))
2221anbi2d 736 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ((𝑖𝐸 ∧ (𝑈𝑖𝑖 = {𝑈, 𝑀})) ↔ (𝑖𝐸𝑖 = {𝑈, 𝑀})))
2315, 22syl5bb 271 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ (𝑖𝐸𝑖 = {𝑈, 𝑀})))
2414, 23eubid 2476 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → (∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖(𝑖𝐸𝑖 = {𝑈, 𝑀})))
2513, 24mpbird 246 . 2 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
26 df-reu 2903 . . 3 (∃!𝑖𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖(𝑖𝐼𝑖 = {𝑈, 𝑀}))
27 nbusgrf1o1.i . . . . . . 7 𝐼 = {𝑒𝐸𝑈𝑒}
2827eleq2i 2680 . . . . . 6 (𝑖𝐼𝑖 ∈ {𝑒𝐸𝑈𝑒})
29 eleq2 2677 . . . . . . 7 (𝑒 = 𝑖 → (𝑈𝑒𝑈𝑖))
3029elrab 3331 . . . . . 6 (𝑖 ∈ {𝑒𝐸𝑈𝑒} ↔ (𝑖𝐸𝑈𝑖))
3128, 30bitri 263 . . . . 5 (𝑖𝐼 ↔ (𝑖𝐸𝑈𝑖))
3231anbi1i 727 . . . 4 ((𝑖𝐼𝑖 = {𝑈, 𝑀}) ↔ ((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3332eubii 2480 . . 3 (∃!𝑖(𝑖𝐼𝑖 = {𝑈, 𝑀}) ↔ ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3426, 33bitri 263 . 2 (∃!𝑖𝐼 𝑖 = {𝑈, 𝑀} ↔ ∃!𝑖((𝑖𝐸𝑈𝑖) ∧ 𝑖 = {𝑈, 𝑀}))
3525, 34sylibr 223 1 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑀𝑁) → ∃!𝑖𝐼 𝑖 = {𝑈, 𝑀})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃!weu 2458  ∃!wreu 2898  {crab 2900  {cpr 4127  ‘cfv 5804  (class class class)co 6549  Vtxcvtx 25673  Edgcedga 25792   USGraph cusgr 40379   NeighbVtx cnbgr 40550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-upgr 25749  df-umgr 25750  df-edga 25793  df-usgr 40381  df-nbgr 40554 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator