MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrid Structured version   Visualization version   GIF version

Theorem mvrid 19244
Description: The 𝑋𝑖-th coefficient of the term 𝑋𝑖 is 1. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrid (𝜑 → ((𝑉𝑋)‘(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 )
Distinct variable groups:   𝑦,𝐷   𝑦,𝑊   𝑦,,𝐼   ,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝑉(𝑦,)   𝑊()   𝑌(𝑦,)   0 (𝑦,)

Proof of Theorem mvrid
StepHypRef Expression
1 mvrfval.v . . 3 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . 3 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . 3 0 = (0g𝑅)
4 mvrfval.o . . 3 1 = (1r𝑅)
5 mvrfval.i . . 3 (𝜑𝐼𝑊)
6 mvrfval.r . . 3 (𝜑𝑅𝑌)
7 mvrval.x . . 3 (𝜑𝑋𝐼)
8 1nn0 11185 . . . 4 1 ∈ ℕ0
92snifpsrbag 19187 . . . 4 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷)
105, 8, 9sylancl 693 . . 3 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷)
111, 2, 3, 4, 5, 6, 7, 10mvrval2 19243 . 2 (𝜑 → ((𝑉𝑋)‘(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = if((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
12 eqid 2610 . . 3 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
1312iftruei 4043 . 2 if((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = 1
1411, 13syl6eq 2660 1 (𝜑 → ((𝑉𝑋)‘(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {crab 2900  ifcif 4036  cmpt 4643  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  0gc0g 15923  1rcur 18324   mVar cmvr 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-mvr 19178
This theorem is referenced by:  mvrf1  19246
  Copyright terms: Public domain W3C validator