MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval2 Structured version   Visualization version   GIF version

Theorem mvrval2 19243
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
mvrval2.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mvrval2 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
Distinct variable groups:   𝑦,𝐷   𝑦,𝑊   𝑦,,𝐼   ,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝐹(𝑦,)   𝑉(𝑦,)   𝑊()   𝑌(𝑦,)   0 (𝑦,)

Proof of Theorem mvrval2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . . 4 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . . 4 0 = (0g𝑅)
4 mvrfval.o . . . 4 1 = (1r𝑅)
5 mvrfval.i . . . 4 (𝜑𝐼𝑊)
6 mvrfval.r . . . 4 (𝜑𝑅𝑌)
7 mvrval.x . . . 4 (𝜑𝑋𝐼)
81, 2, 3, 4, 5, 6, 7mvrval 19242 . . 3 (𝜑 → (𝑉𝑋) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )))
98fveq1d 6105 . 2 (𝜑 → ((𝑉𝑋)‘𝐹) = ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹))
10 mvrval2.f . . 3 (𝜑𝐹𝐷)
11 eqeq1 2614 . . . . 5 (𝑓 = 𝐹 → (𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ↔ 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1211ifbid 4058 . . . 4 (𝑓 = 𝐹 → if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
13 eqid 2610 . . . 4 (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) = (𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
14 fvex 6113 . . . . . 6 (1r𝑅) ∈ V
154, 14eqeltri 2684 . . . . 5 1 ∈ V
16 fvex 6113 . . . . . 6 (0g𝑅) ∈ V
173, 16eqeltri 2684 . . . . 5 0 ∈ V
1815, 17ifex 4106 . . . 4 if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) ∈ V
1912, 13, 18fvmpt 6191 . . 3 (𝐹𝐷 → ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
2010, 19syl 17 . 2 (𝜑 → ((𝑓𝐷 ↦ if(𝑓 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
219, 20eqtrd 2644 1 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  ifcif 4036  cmpt 4643  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816  cn 10897  0cn0 11169  0gc0g 15923  1rcur 18324   mVar cmvr 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-mvr 19178
This theorem is referenced by:  mvrid  19244  mvrf1  19246  mvrcl  19270
  Copyright terms: Public domain W3C validator