MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirauto Structured version   Visualization version   GIF version

Theorem mirauto 25379
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirauto.m 𝑀 = (𝑆𝑇)
mirauto.x 𝑋 = (𝑀𝐴)
mirauto.y 𝑌 = (𝑀𝐵)
mirauto.z 𝑍 = (𝑀𝐶)
mirauto.0 (𝜑𝑇𝑃)
mirauto.1 (𝜑𝐴𝑃)
mirauto.2 (𝜑𝐵𝑃)
mirauto.3 (𝜑𝐶𝑃)
mirauto.4 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
Assertion
Ref Expression
mirauto (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)

Proof of Theorem mirauto
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirauto.x . . . 4 𝑋 = (𝑀𝐴)
8 mirauto.0 . . . . . 6 (𝜑𝑇𝑃)
9 mirauto.m . . . . . 6 𝑀 = (𝑆𝑇)
101, 2, 3, 4, 5, 6, 8, 9mirf 25355 . . . . 5 (𝜑𝑀:𝑃𝑃)
11 mirauto.1 . . . . 5 (𝜑𝐴𝑃)
1210, 11ffvelrnd 6268 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑃)
137, 12syl5eqel 2692 . . 3 (𝜑𝑋𝑃)
14 eqid 2610 . . 3 (𝑆𝑋) = (𝑆𝑋)
15 mirauto.y . . . 4 𝑌 = (𝑀𝐵)
16 mirauto.2 . . . . 5 (𝜑𝐵𝑃)
1710, 16ffvelrnd 6268 . . . 4 (𝜑 → (𝑀𝐵) ∈ 𝑃)
1815, 17syl5eqel 2692 . . 3 (𝜑𝑌𝑃)
19 mirauto.z . . . 4 𝑍 = (𝑀𝐶)
20 mirauto.3 . . . . 5 (𝜑𝐶𝑃)
2110, 20ffvelrnd 6268 . . . 4 (𝜑 → (𝑀𝐶) ∈ 𝑃)
2219, 21syl5eqel 2692 . . 3 (𝜑𝑍𝑃)
23 mirauto.4 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
2423, 20eqeltrd 2688 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
25 eqid 2610 . . . . . 6 (𝑆𝐴) = (𝑆𝐴)
261, 2, 3, 4, 5, 6, 11, 25, 16mircgr 25352 . . . . 5 (𝜑 → (𝐴 ((𝑆𝐴)‘𝐵)) = (𝐴 𝐵))
271, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26mircgrs 25368 . . . 4 (𝜑 → ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))) = ((𝑀𝐴) (𝑀𝐵)))
287a1i 11 . . . . 5 (𝜑𝑋 = (𝑀𝐴))
2923fveq2d 6107 . . . . . 6 (𝜑 → (𝑀‘((𝑆𝐴)‘𝐵)) = (𝑀𝐶))
3029, 19syl6reqr 2663 . . . . 5 (𝜑𝑍 = (𝑀‘((𝑆𝐴)‘𝐵)))
3128, 30oveq12d 6567 . . . 4 (𝜑 → (𝑋 𝑍) = ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))))
327, 15oveq12i 6561 . . . . 5 (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵))
3332a1i 11 . . . 4 (𝜑 → (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵)))
3427, 31, 333eqtr4d 2654 . . 3 (𝜑 → (𝑋 𝑍) = (𝑋 𝑌))
351, 2, 3, 4, 5, 6, 11, 25, 16mirbtwn 25353 . . . . . 6 (𝜑𝐴 ∈ (((𝑆𝐴)‘𝐵)𝐼𝐵))
3623oveq1d 6564 . . . . . 6 (𝜑 → (((𝑆𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵))
3735, 36eleqtrd 2690 . . . . 5 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
381, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37mirbtwni 25366 . . . 4 (𝜑 → (𝑀𝐴) ∈ ((𝑀𝐶)𝐼(𝑀𝐵)))
3919, 15oveq12i 6561 . . . 4 (𝑍𝐼𝑌) = ((𝑀𝐶)𝐼(𝑀𝐵))
4038, 7, 393eltr4g 2705 . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
411, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40ismir 25354 . 2 (𝜑𝑍 = ((𝑆𝑋)‘𝑌))
4241eqcomd 2616 1 (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-mir 25348
This theorem is referenced by:  miduniq2  25382  krippenlem  25385
  Copyright terms: Public domain W3C validator