Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  miduniq Structured version   Visualization version   GIF version

Theorem miduniq 25380
 Description: Unicity of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
miduniq.a (𝜑𝐴𝑃)
miduniq.b (𝜑𝐵𝑃)
miduniq.x (𝜑𝑋𝑃)
miduniq.y (𝜑𝑌𝑃)
miduniq.e (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
miduniq.f (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
Assertion
Ref Expression
miduniq (𝜑𝐴 = 𝐵)

Proof of Theorem miduniq
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 miduniq.x . . . 4 (𝜑𝑋𝑃)
6 miduniq.y . . . 4 (𝜑𝑌𝑃)
7 miduniq.b . . . 4 (𝜑𝐵𝑃)
8 eqid 2610 . . . 4 (cgrG‘𝐺) = (cgrG‘𝐺)
9 mirval.d . . . . 5 = (dist‘𝐺)
10 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
11 miduniq.a . . . . 5 (𝜑𝐴𝑃)
12 eqid 2610 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
131, 9, 3, 2, 10, 4, 11, 12, 7mircl 25356 . . . 4 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
14 eqid 2610 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
151, 9, 3, 2, 10, 4, 7, 14, 5mirbtwn 25353 . . . . . 6 (𝜑𝐵 ∈ (((𝑆𝐵)‘𝑋)𝐼𝑋))
16 miduniq.f . . . . . . 7 (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
1716oveq1d 6564 . . . . . 6 (𝜑 → (((𝑆𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋))
1815, 17eleqtrd 2690 . . . . 5 (𝜑𝐵 ∈ (𝑌𝐼𝑋))
191, 9, 3, 4, 6, 7, 5, 18tgbtwncom 25183 . . . 4 (𝜑𝐵 ∈ (𝑋𝐼𝑌))
201, 9, 3, 2, 10, 4, 11, 12, 6, 7miriso 25365 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑌 𝐵))
21 miduniq.e . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
221, 9, 3, 2, 10, 4, 11, 12, 5, 21mircom 25358 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝑌) = 𝑋)
2322oveq1d 6564 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑋 ((𝑆𝐴)‘𝐵)))
241, 9, 3, 2, 10, 4, 7, 14, 5mircgr 25352 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑋))
2516oveq2d 6565 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑌))
2624, 25eqtr3d 2646 . . . . . . 7 (𝜑 → (𝐵 𝑋) = (𝐵 𝑌))
2726eqcomd 2616 . . . . . 6 (𝜑 → (𝐵 𝑌) = (𝐵 𝑋))
281, 9, 3, 4, 7, 6, 7, 5, 27tgcgrcomlr 25175 . . . . 5 (𝜑 → (𝑌 𝐵) = (𝑋 𝐵))
2920, 23, 283eqtr3rd 2653 . . . 4 (𝜑 → (𝑋 𝐵) = (𝑋 ((𝑆𝐴)‘𝐵)))
301, 9, 3, 2, 10, 4, 11, 12, 5, 7miriso 25365 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑋 𝐵))
3121oveq1d 6564 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑌 ((𝑆𝐴)‘𝐵)))
321, 9, 3, 4, 7, 5, 7, 6, 26tgcgrcomlr 25175 . . . . 5 (𝜑 → (𝑋 𝐵) = (𝑌 𝐵))
3330, 31, 323eqtr3rd 2653 . . . 4 (𝜑 → (𝑌 𝐵) = (𝑌 ((𝑆𝐴)‘𝐵)))
341, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33tgidinside 25266 . . 3 (𝜑𝐵 = ((𝑆𝐴)‘𝐵))
3534eqcomd 2616 . 2 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐵)
361, 9, 3, 2, 10, 4, 11, 12, 7mirinv 25361 . 2 (𝜑 → (((𝑆𝐴)‘𝐵) = 𝐵𝐴 = 𝐵))
3735, 36mpbid 221 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205  pInvGcmir 25347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-mir 25348 This theorem is referenced by:  miduniq1  25381  krippenlem  25385  mideu  25430  opphllem3  25441
 Copyright terms: Public domain W3C validator