MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustbl Structured version   Visualization version   GIF version

Theorem metustbl 22181
Description: The "section" image of an entourage at a point 𝑃 always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017.)
Assertion
Ref Expression
metustbl ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
Distinct variable groups:   𝐷,𝑎   𝑃,𝑎   𝑉,𝑎   𝑋,𝑎

Proof of Theorem metustbl
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 simp3 1056 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑃𝑋)
3 simpr 476 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → 𝑤𝑉)
4 vex 3176 . . . . . . . 8 𝑤 ∈ V
5 eqid 2610 . . . . . . . . 9 (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) = (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))
65elrnmpt 5293 . . . . . . . 8 (𝑤 ∈ V → (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟))))
74, 6ax-mp 5 . . . . . . 7 (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) ↔ ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
87biimpi 205 . . . . . 6 (𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟))) → ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
98ad2antlr 759 . . . . 5 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → ∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)))
10 sseq1 3589 . . . . . . 7 (𝑤 = (𝐷 “ (0[,)𝑟)) → (𝑤𝑉 ↔ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
1110biimpcd 238 . . . . . 6 (𝑤𝑉 → (𝑤 = (𝐷 “ (0[,)𝑟)) → (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
1211reximdv 2999 . . . . 5 (𝑤𝑉 → (∃𝑟 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑟)) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉))
133, 9, 12sylc 63 . . . 4 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) ∧ 𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))) ∧ 𝑤𝑉) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉)
14 ne0i 3880 . . . . . 6 (𝑃𝑋𝑋 ≠ ∅)
152, 14syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑋 ≠ ∅)
16 simp2 1055 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → 𝑉 ∈ (metUnif‘𝐷))
17 metuel 22179 . . . . . 6 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑉 ∈ (metUnif‘𝐷) ↔ (𝑉 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)))
1817simplbda 652 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑉 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)
1915, 1, 16, 18syl21anc 1317 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑤 ∈ ran (𝑟 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑟)))𝑤𝑉)
2013, 19r19.29a 3060 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉)
21 imass1 5419 . . . . . 6 ((𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))
2221reximi 2994 . . . . 5 (∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃}))
23 blval2 22177 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) = ((𝐷 “ (0[,)𝑟)) “ {𝑃}))
2423sseq1d 3595 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
25243expa 1257 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
2625rexbidva 3031 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}) ↔ ∃𝑟 ∈ ℝ+ ((𝐷 “ (0[,)𝑟)) “ {𝑃}) ⊆ (𝑉 “ {𝑃})))
2722, 26syl5ibr 235 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
2827imp 444 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ ∃𝑟 ∈ ℝ+ (𝐷 “ (0[,)𝑟)) ⊆ 𝑉) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))
291, 2, 20, 28syl21anc 1317 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃}))
30 blssexps 22041 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
31303adant2 1073 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → (∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ (𝑉 “ {𝑃})))
3229, 31mpbird 246 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑉 ∈ (metUnif‘𝐷) ∧ 𝑃𝑋) → ∃𝑎 ∈ ran (ball‘𝐷)(𝑃𝑎𝑎 ⊆ (𝑉 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  wss 3540  c0 3874  {csn 4125  cmpt 4643   × cxp 5036  ccnv 5037  ran crn 5039  cima 5041  cfv 5804  (class class class)co 6549  0cc0 9815  +crp 11708  [,)cico 12048  PsMetcpsmet 19551  ballcbl 19554  metUnifcmetu 19558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-psmet 19559  df-bl 19562  df-fbas 19564  df-fg 19565  df-metu 19566
This theorem is referenced by:  psmetutop  22182
  Copyright terms: Public domain W3C validator