Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imass1 Structured version   Visualization version   GIF version

Theorem imass1 5419
 Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
Assertion
Ref Expression
imass1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem imass1
StepHypRef Expression
1 ssres 5344 . . 3 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 rnss 5275 . . 3 ((𝐴𝐶) ⊆ (𝐵𝐶) → ran (𝐴𝐶) ⊆ ran (𝐵𝐶))
31, 2syl 17 . 2 (𝐴𝐵 → ran (𝐴𝐶) ⊆ ran (𝐵𝐶))
4 df-ima 5051 . 2 (𝐴𝐶) = ran (𝐴𝐶)
5 df-ima 5051 . 2 (𝐵𝐶) = ran (𝐵𝐶)
63, 4, 53sstr4g 3609 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊆ wss 3540  ran crn 5039   ↾ cres 5040   “ cima 5041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051 This theorem is referenced by:  vdwnnlem1  15537  dprdres  18250  imasnopn  21303  imasncld  21304  imasncls  21305  utoptop  21848  restutop  21851  ustuqtop3  21857  utopreg  21866  metustbl  22181  imadifxp  28796  esum2d  29482  eulerpartlemmf  29764  brtrclfv2  37038  frege97d  37063  frege109d  37068  frege131d  37075  hess  37094
 Copyright terms: Public domain W3C validator