Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdet Structured version   Visualization version   GIF version

 Description: Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrixes. (Contributed by Thierry Arnoux, 23-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
Assertion
Ref Expression
madjusmdet (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))

Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madjusmdet.b . 2 𝐵 = (Base‘𝐴)
2 madjusmdet.a . 2 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.t . 2 · = (.r𝑅)
6 madjusmdet.z . 2 𝑍 = (ℤRHom‘𝑅)
8 madjusmdet.n . 2 (𝜑𝑁 ∈ ℕ)
9 madjusmdet.r . 2 (𝜑𝑅 ∈ CRing)
10 madjusmdet.i . 2 (𝜑𝐼 ∈ (1...𝑁))
11 madjusmdet.j . 2 (𝜑𝐽 ∈ (1...𝑁))
13 eqeq1 2614 . . . 4 (𝑘 = 𝑖 → (𝑘 = 1 ↔ 𝑖 = 1))
14 breq1 4586 . . . . 5 (𝑘 = 𝑖 → (𝑘𝐼𝑖𝐼))
15 oveq1 6556 . . . . 5 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
16 id 22 . . . . 5 (𝑘 = 𝑖𝑘 = 𝑖)
1714, 15, 16ifbieq12d 4063 . . . 4 (𝑘 = 𝑖 → if(𝑘𝐼, (𝑘 − 1), 𝑘) = if(𝑖𝐼, (𝑖 − 1), 𝑖))
1813, 17ifbieq2d 4061 . . 3 (𝑘 = 𝑖 → if(𝑘 = 1, 𝐼, if(𝑘𝐼, (𝑘 − 1), 𝑘)) = if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
1918cbvmptv 4678 . 2 (𝑘 ∈ (1...𝑁) ↦ if(𝑘 = 1, 𝐼, if(𝑘𝐼, (𝑘 − 1), 𝑘))) = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
20 breq1 4586 . . . . 5 (𝑘 = 𝑖 → (𝑘𝑁𝑖𝑁))
2120, 15, 16ifbieq12d 4063 . . . 4 (𝑘 = 𝑖 → if(𝑘𝑁, (𝑘 − 1), 𝑘) = if(𝑖𝑁, (𝑖 − 1), 𝑖))
2213, 21ifbieq2d 4061 . . 3 (𝑘 = 𝑖 → if(𝑘 = 1, 𝑁, if(𝑘𝑁, (𝑘 − 1), 𝑘)) = if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
2322cbvmptv 4678 . 2 (𝑘 ∈ (1...𝑁) ↦ if(𝑘 = 1, 𝑁, if(𝑘𝑁, (𝑘 − 1), 𝑘))) = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
24 eqeq1 2614 . . . 4 (𝑙 = 𝑗 → (𝑙 = 1 ↔ 𝑗 = 1))
25 breq1 4586 . . . . 5 (𝑙 = 𝑗 → (𝑙𝐽𝑗𝐽))
26 oveq1 6556 . . . . 5 (𝑙 = 𝑗 → (𝑙 − 1) = (𝑗 − 1))
27 id 22 . . . . 5 (𝑙 = 𝑗𝑙 = 𝑗)
2825, 26, 27ifbieq12d 4063 . . . 4 (𝑙 = 𝑗 → if(𝑙𝐽, (𝑙 − 1), 𝑙) = if(𝑗𝐽, (𝑗 − 1), 𝑗))
2924, 28ifbieq2d 4061 . . 3 (𝑙 = 𝑗 → if(𝑙 = 1, 𝐽, if(𝑙𝐽, (𝑙 − 1), 𝑙)) = if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
3029cbvmptv 4678 . 2 (𝑙 ∈ (1...𝑁) ↦ if(𝑙 = 1, 𝐽, if(𝑙𝐽, (𝑙 − 1), 𝑙))) = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
31 breq1 4586 . . . . 5 (𝑙 = 𝑗 → (𝑙𝑁𝑗𝑁))
3231, 26, 27ifbieq12d 4063 . . . 4 (𝑙 = 𝑗 → if(𝑙𝑁, (𝑙 − 1), 𝑙) = if(𝑗𝑁, (𝑗 − 1), 𝑗))
3324, 32ifbieq2d 4061 . . 3 (𝑙 = 𝑗 → if(𝑙 = 1, 𝑁, if(𝑙𝑁, (𝑙 − 1), 𝑙)) = if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
3433cbvmptv 4678 . 2 (𝑙 ∈ (1...𝑁) ↦ if(𝑙 = 1, 𝑁, if(𝑙𝑁, (𝑙 − 1), 𝑙))) = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 23, 30, 34madjusmdetlem4 29224 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818   ≤ cle 9954   − cmin 10145  -cneg 10146  ℕcn 10897  ...cfz 12197  ↑cexp 12722  Basecbs 15695  .rcmulr 15769  CRingccrg 18371  ℤRHomczrh 19667   Mat cmat 20032   maDet cmdat 20209   maAdju cmadu 20257  subMat1csmat 29187 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-symg 17621  df-pmtr 17685  df-psgn 17734  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-marrep 20183  df-subma 20202  df-mdet 20210  df-madu 20259  df-minmar1 20260  df-smat 29188 This theorem is referenced by:  mdetlap  29226
 Copyright terms: Public domain W3C validator