Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsntrim Structured version   Visualization version   GIF version

Theorem lspsntrim 18919
 Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypotheses
Ref Expression
lspsntrim.v 𝑉 = (Base‘𝑊)
lspsntrim.s = (-g𝑊)
lspsntrim.p = (LSSum‘𝑊)
lspsntrim.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsntrim ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))

Proof of Theorem lspsntrim
StepHypRef Expression
1 lspsntrim.v . . . . 5 𝑉 = (Base‘𝑊)
2 eqid 2610 . . . . 5 (invg𝑊) = (invg𝑊)
31, 2lmodvnegcl 18727 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((invg𝑊)‘𝑌) ∈ 𝑉)
433adant2 1073 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((invg𝑊)‘𝑌) ∈ 𝑉)
5 eqid 2610 . . . 4 (+g𝑊) = (+g𝑊)
6 lspsntrim.n . . . 4 𝑁 = (LSpan‘𝑊)
7 lspsntrim.p . . . 4 = (LSSum‘𝑊)
81, 5, 6, 7lspsntri 18918 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ ((invg𝑊)‘𝑌) ∈ 𝑉) → (𝑁‘{(𝑋(+g𝑊)((invg𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{((invg𝑊)‘𝑌)})))
94, 8syld3an3 1363 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋(+g𝑊)((invg𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{((invg𝑊)‘𝑌)})))
10 lspsntrim.s . . . . . 6 = (-g𝑊)
111, 5, 2, 10grpsubval 17288 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)((invg𝑊)‘𝑌)))
1211sneqd 4137 . . . 4 ((𝑋𝑉𝑌𝑉) → {(𝑋 𝑌)} = {(𝑋(+g𝑊)((invg𝑊)‘𝑌))})
1312fveq2d 6107 . . 3 ((𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑋(+g𝑊)((invg𝑊)‘𝑌))}))
14133adant1 1072 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑋(+g𝑊)((invg𝑊)‘𝑌))}))
151, 2, 6lspsnneg 18827 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{((invg𝑊)‘𝑌)}) = (𝑁‘{𝑌}))
16153adant2 1073 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{((invg𝑊)‘𝑌)}) = (𝑁‘{𝑌}))
1716eqcomd 2616 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{𝑌}) = (𝑁‘{((invg𝑊)‘𝑌)}))
1817oveq2d 6565 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) (𝑁‘{((invg𝑊)‘𝑌)})))
199, 14, 183sstr4d 3611 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  {csn 4125  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  invgcminusg 17246  -gcsg 17247  LSSumclsm 17872  LModclmod 18686  LSpanclspn 18792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-cntz 17573  df-lsm 17874  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793 This theorem is referenced by:  mapdpglem1  35979  baerlem3lem2  36017  baerlem5alem2  36018  baerlem5blem2  36019
 Copyright terms: Public domain W3C validator